全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳纳米管增强水泥基材料力学性能研究
Study on the Mechanical Properties of Cement-Based Materials Enhanced by Carbon Nanotubes

DOI: 10.12677/ms.2025.154070, PP. 650-659

Keywords: 碳纳米管,水泥基复合材料,力学性能,分散技术
Carbon Nanotubes
, Cementitious Composites, Mechanical Properties, Dispersion Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳纳米管(CNTs)因其独特的结构特性和卓越的力学、电学及热学性能,在材料科学领域受到了广泛关注,将碳纳米管添加到水泥基材料中,可以显著提升这些材料的抗压强度、抗折强度和耐久性。该篇综述旨在综合评述碳纳米管在增强水泥基材料力学性能方面的研究进展,包括关键发现和创新成果。同时,探讨了碳纳米管在水泥基材料中的分散性问题,及其对材料力学性能的影响,以及国内外在该领域的研究现状。鉴于碳纳米管在水泥基体中的有效分散仍是一个挑战,还分析了多尺度的重要性、新型分散技术的开发以及复合掺合物的研究,并预测未来的研究方向将聚焦于提升碳纳米管的生产工艺、功能化研究、耐久性研究以及创新应用的探索。这些研究有望使碳纳米管在提升水泥基材料力学性能方面发挥更加重要的作用,进而推动建筑材料科学的进步与发展。
Carbon nanotubes (CNTs) have attracted extensive attention in the field of materials science due to their unique structural properties and excellent mechanical, electrical and thermal properties, and the addition of carbon nanotubes to cement-based materials can significantly improve the compressive strength, flexural strength and durability of these materials. The purpose of this review is to comprehensively review the research progress of carbon nanotubes in enhancing the mechanical properties of cement-based materials, including key findings and innovations. At the same time, the dispersion of carbon nanotubes in cement-based materials, their influence on the mechanical properties of materials, and the research status in this field at home and abroad are discussed. In view of the fact that the effective dispersion of carbon nanotubes in cement matrices is still a challenge, the importance of multi-scale, the development of new dispersion technologies and the research of composite admixtures are analyzed, and it is predicted that the future research direction will focus on improving the production process of carbon nanotubes, functionalization research, durability research and exploration of innovative applications. These studies are expected to make carbon nanotubes play a more important role in improving the mechanical properties of cement-based materials, and then promote the progress and development of building materials science.

References

[1]  辜萍, 王宇, 李广海. 碳纳米管的力学性能及碳纳米管复合材料研究[J]. 力学进展, 2002, 32(4): 563-578.
[2]  晁楠楠, 付饶, 孙昌梅, 等. 碳纳米管增强聚合物复合材料的合成及应用进展[J]. 材料化学前沿, 2017, 5(3): 70-79.
[3]  朱建平, 冯爱虎, 王希建, 等. 纳米材料在水泥基材料中的应用研究进展[J]. 化工新型材料, 2013, 41(10): 162-164.
[4]  高建龙. 碳纳米管/聚合物复合材料电学性能研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2009.
[5]  宋九鹏, 肇研, 李学宽, 等. 高韧性低黏度碳纳米管/聚醚酰亚胺/聚醚醚酮纳米复合材料的研究(英文) [J]. 新型炭材料(中英文), 2024, 39(4): 715-728.
[6]  Zhang, F., Liu, X., Yang, C., Chen, G., Meng, Y., Zhou, H., et al. (2024) Insights into Robust Carbon Nanotubes in Tribology: From Nano to Macro. Materials Today, 74, 203-234.
https://doi.org/10.1016/j.mattod.2024.03.001
[7]  范桃桃, 李晓拓, 肖文凯. 碳纳米管对环氧树脂热导率影响的模拟研究[J]. 武汉大学学报(工学版), 2019, 52(1): 77-82.
[8]  Quan, G., Wu, Y., Li, W., Li, D., Liu, X., Wang, K., et al. (2024) Construction of Cellulose Nanofiber/Carbon Nanotube Synergistic Network on Carbon Fiber Surface to Enhance Mechanical Properties and Thermal Conductivity of Composites. Composites Science and Technology, 248, Article ID: 110454.
https://doi.org/10.1016/j.compscitech.2024.110454
[9]  Zou, H., Feng, Y., Tang, X., Zhang, X. and Qiu, L. (2024) Interfacial Thermal Conduction Mechanism of Polypyrrole/Carbon Nanotube Composites. Composites Science and Technology, 245, Article ID: 110346.
https://doi.org/10.1016/j.compscitech.2023.110346
[10]  碳纳米管内壁参与化学反应首次被发现[J]. 化学工业与工程, 2011, 28(5): 53.
[11]  Chavhan, J., Rathod, R., Tandon, V., Umare, S. and Patil, A. (2022) Structural and Physico-Chemical Properties of Electroactive Polyamide/multi-Walled Carbon Nanotubes Nanocomposites. Surfaces and Interfaces, 29, Article ID: 101765.
https://doi.org/10.1016/j.surfin.2022.101765
[12]  Yang, J.C., Zhang, M.K., Zhang, Y.Q., et al. (2024) Density Functional Theory Study of Adsorption and Dissociation of CH2Cl2 on The Surfaces of Transition Metal (Fe, Co, Ni, and Cu)-Doped Carbon Nanotubes. Chemical Physics Impact, 8, Article ID: 100437.
[13]  Zhao, H., Xi, Z., Wang, Q., Miao, C. and Liu, C. (2024) Investigation on Open Water Adsorption Performance of Multi-Walled Carbon Nanotubes Modified Mil-96(Al). Journal of Solid State Chemistry, 334, Article ID: 124677.
https://doi.org/10.1016/j.jssc.2024.124677
[14]  展咪咪. 原位生长碳纳米管的制备及对砂浆压敏和力学性能的影响[D]: [博士学位论文]. 南京: 东南大学, 2020.
[15]  丁会敏, 杨光, 唐诗洋, 等. 碳纳米管分散研究现状[J]. 黑龙江科学, 2023, 14(20): 25-28.
[16]  Zhang, H., Cao, S. and Yilmaz, E. (2023) Carbon Nanotube Reinforced Cementitious Tailings Composites: Links to Mechanical and Microstructural Characteristics. Construction and Building Materials, 365, Article ID: 130123.
https://doi.org/10.1016/j.conbuildmat.2022.130123
[17]  李春, 朱大亮, 梁帅锋, 等. 碳纳米管在水泥基中的分散性研究现状及展望[J]. 山西建筑, 2022, 48(22): 104-109.
[18]  Kim, Y., Hong, J.S., Moon, S.Y., Hong, J. and Lee, J.U. (2021) Evaluation of Carbon Nanotubes Dispersion in Aqueous Solution with Various Dispersing Agents. Carbon Letters, 31, 1327-1337.
https://doi.org/10.1007/s42823-021-00285-8
[19]  张好强, 吴昱鑫, 张傲, 等. 碳纳米管分散性及功能化表征方法的研究现状[J]. 炭素技术, 2024, 43(2): 1-5, 70.
[20]  陈星宇. 改性碳纳米管增强水泥基复合材料的力学性能及微观研究[D]: [硕士学位论文]. 郑州: 中原工学院, 2018.
[21]  戚瑞. 不同直径碳纳米管水泥基材料力学特性及抗冻性能研究[D]: [硕士学位论文]. 西安: 长安大学, 2019.
[22]  戚瑞, 田威, 王峰, 等. 不同直径碳纳米管对水泥基试样力学性能的影响[J]. 硅酸盐通报, 2019, 38(3): 653-658.
[23]  李相国, 明添, 刘卓霖, 等. 碳纳米管水泥基复合材料耐久性及力学性能研究[J]. 硅酸盐通报, 2018, 37(5): 1497-1502.
[24]  Yang, H., Shen, Z., Zhang, M., Wang, Z. and Li, J. (2024) Mechanical Properties and Microstructure of Cement-Based Materials by Different High-Temperature Curing Methods: A Review. Journal of Building Engineering, 96, Article ID: 110464.
https://doi.org/10.1016/j.jobe.2024.110464
[25]  李伟娜, 李晔, 李晶, 等. 碳纳米管改性水泥基复合材料力学性能研究[J]. 混凝土, 2022(8): 97-101.
[26]  张鹏, 代小兵, 付世东, 等. 纳米粒子和PVA纤维增强水泥基复合材料抗裂性能研究[J]. 硅酸盐通报, 2017, 36(9): 2923-2928, 2934.
[27]  刘巧玲. 碳纳米管增强水泥基复合材料多尺度性能及机理研究[D]: [博士学位论文]. 南京: 东南大学, 2015.
[28]  牛荻涛, 何嘉琦, 傅强, 等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报, 2020, 48(5): 705-717.
[29]  陈念慈, 李若菲, 黄点秋, 等. 碳纳米管对水泥基材料微观结构的影响研究[J]. 当代化工研究, 2024(9): 37-40.
[30]  施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5): 1033-1049.
[31]  Li, G., Shi, X., Gao, Y., Ning, J., Chen, W., Wei, X., et al. (2023) Reinforcing Effects of Carbon Nanotubes on Cement-Based Grouting Materials under Dynamic Impact Loading. Construction and Building Materials, 382, Article ID: 131083.
https://doi.org/10.1016/j.conbuildmat.2023.131083
[32]  Ramezani, M., Dehghani, A. and Sherif, M.M. (2022) Carbon Nanotube Reinforced Cementitious Composites: A Comprehensive Review. Construction and Building Materials, 315, Article ID: 125100.
https://doi.org/10.1016/j.conbuildmat.2021.125100
[33]  Bai, Y., Yue, H., Wang, J., Shen, B., Sun, S., Wang, S., et al. (2020) Super-Durable Ultralong Carbon Nanotubes. Science, 369, 1104-1106.
https://doi.org/10.1126/science.aay5220
[34]  Zhang, X., Lei, X., Jia, X., Sun, T., Luo, J., Xu, S., et al. (2024) Carbon Nanotube Fibers with Dynamic Strength up to 14 GPa. Science, 384, 1318-1323.
https://doi.org/10.1126/science.adj1082
[35]  Zhou, E., Xi, J., Guo, Y., Liu, Y., Xu, Z., Peng, L., et al. (2018) Synergistic Effect of Graphene and Carbon Nanotube for High-Performance Electromagnetic Interference Shielding Films. Carbon, 133, 316-322.
https://doi.org/10.1016/j.carbon.2018.03.023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133