|
Material Sciences 2025
花状纳米Bi2MoO6/EG复合材料构建高性能非对称超级电容器
|
Abstract:
本文针对超级电容器赝电容材料导电性差的问题,通过溶剂热法将Bi2MoO6纳米花负载于膨胀石墨(EG)表面,成功制备了Bi2MoO6/EG复合负极材料。EG的引入显著提升了材料的导电性,电化学测试表明,Bi2MoO6/EG在2 A·g?1电流密度下比电容达886.7 F·g?1,30 A·g?1时仍保持427.5 F·g?1 (倍率性能48%),且循环2500次后电容保持率为90.5%。同时,以Ni-MOF为前驱体合成了NiO/C正极材料,其比电容为683.5 F·g?1,25 A·g?1下倍率性能达76.9%,循环稳定性优异(2500次后保持95.5%)。基于上述材料构建的Bi2MoO6/EG//NiO/C非对称超级电容器(ASC)在1.8 V工作电压下,最大能量密度为45.05 Wh·kg?1 (功率密度1800 W·kg?1),7000次循环后电容保持率91.2%。研究结果表明,Bi2MoO6/EG复合材料通过EG的导电网络与赝电容协同效应显著提升了储能性能,为非对称超级电容器的实际应用提供了新思路。
To address the issue of poor conductivity of pseudocapacitive materials in supercapacitors, Bi2MoO6 nanoflowers were loaded onto expanded graphite (EG) using a solvothermal method. The incorporation of EG markedly improved the material’s electrical conductivity. Electrochemical tests revealed that the Bi2MoO6/EG composite attained a specific capacitance of 886.7 F·g?1 at 2 A·g?1 and maintained 427.5 F·g?1 at 30 A·g?1 (rate performance of 48%), with a capacitance retention of 90.5% following 2500 cycles. Furthermore, the NiO/C cathode material, obtained from Ni-MOF precursors, had a specific capacitance of 683.5 F·g?1 and a rate capability of 76.9% at 25 A·g?1, in addition to remarkable cycling stability with 95.5% retention after 2500 cycles. The fabricated Bi2MoO6/EG//NiO/C asymmetric supercapacitor (ASC) functioned at 1.8 V, achieving a peak energy density of 45.05 Wh·kg?1 (power density: 1800 W·kg?1) and maintained 91.2% of its original capacitance after 7000 cycles. The results show that the Bi2MoO6/EG composite material improves energy storage performance significantly through the synergistic effect of EG’s conductive network and pseudocapacitance, providing new ideas for asymmetric supercapacitors.
[1] | Sahu, B.K. (2018) Wind Energy Developments and Policies in China: A Short Review. Renewable and Sustainable Energy Reviews, 81, 1393-1405. https://doi.org/10.1016/j.rser.2017.05.183 |
[2] | Khan, N., Kalair, A., Abas, N. and Haider, A. (2017) Review of Ocean Tidal, Wave and Thermal Energy Technologies. Renewable and Sustainable Energy Reviews, 72, 590-604. https://doi.org/10.1016/j.rser.2017.01.079 |
[3] | Koohi-Fayegh, S. and Rosen, M.A. (2020) A Review of Energy Storage Types, Applications and Recent Developments. Journal of Energy Storage, 27, Article ID: 101047. https://doi.org/10.1016/j.est.2019.101047 |
[4] | Mahlia, T.M.I., Saktisahdan, T.J., Jannifar, A., Hasan, M.H. and Matseelar, H.S.C. (2014) A Review of Available Methods and Development on Energy Storage; Technology Update. Renewable and Sustainable Energy Reviews, 33, 532-545. https://doi.org/10.1016/j.rser.2014.01.068 |
[5] | Zuo, G., Wang, Y., Teo, W.L., Xie, A., Guo, Y., Dai, Y., et al. (2021) Enhanced Photocatalytic Water Oxidation by Hierarchical 2D-Bi2MoO6@2D-MXene Schottky Junction Nanohybrid. Chemical Engineering Journal, 403, Article Id: 126328. https://doi.org/10.1016/j.cej.2020.126328 |
[6] | Yu, C., Wu, Z., Liu, R., Dionysiou, D.D., Yang, K., Wang, C., et al. (2017) Novel Fluorinated Bi2MoO6 Nanocrystals for Efficient Photocatalytic Removal of Water Organic Pollutants under Different Light Source Illumination. Applied Catalysis B: Environmental, 209, 1-11. https://doi.org/10.1016/j.apcatb.2017.02.057 |
[7] | Liu, J., Liu, X., Dai, C., Zeng, C., Ali, S., Bououdina, M., et al. (2024) Copper-Doped Bi2MoO6 with Concurrent Oxygen Vacancies for Enhanced CO2 Photoreduction. Inorganic Chemistry Frontiers, 11, 8003-8015. https://doi.org/10.1039/d4qi02005g |
[8] | Li, J., Chen, C., Bai, J., Jin, Y. and Guo, C. (2025) Boosting of the Piezoelectric Photocatalytic Performance of Bi2MoO6 by Fe3+ Doping and Construction S-Scheme Heterojunction Using WO3. Journal of Colloid and Interface Science, 683, 574-584. https://doi.org/10.1016/j.jcis.2024.12.086 |
[9] | Chai, Y., Pang, Z., Jiang, H., Tsoi, C.C., Wan, L., Du, Y., et al. (2025) Electron-Mediator-Free Efficient Photocatalytic Regeneration of Coenzyme NAD(P)H via Direct Electron Transfer Using Ultrathin Bi2MoO6 Nanosheets. Green Chemistry, 27, 623-632. https://doi.org/10.1039/d4gc05207b |
[10] | Chen, R., Gan, W., Guo, J., Ding, S., Liu, R., Zhao, Z., et al. (2024) Synergistic Defects and Structural Reconstruction in S-Scheme Bi2MoO6-X-TiO2 Heterojunction for Enhancing Piezo-Photocatalytic Degradation of Gatifloxacin. Chemical Engineering Journal, 502, Article ID: 157867. https://doi.org/10.1016/j.cej.2024.157867 |
[11] | Huang, W., Zhang, Y., Li, Y., Zeng, T., Wan, Q. and Yang, N. (2020) Morphology-Controlled Electrochemical Sensing of Environmental Cd2+ and Pb2+ Ions on Expanded Graphite Supported CeO2 Nanomaterials. Analytica Chimica Acta, 1126, 63-71. https://doi.org/10.1016/j.aca.2020.06.010 |
[12] | Yu, Z., Xin, S., You, Y., Yu, L., Lin, Y., Xu, D., et al. (2016) Ion-Catalyzed Synthesis of Microporous Hard Carbon Embedded with Expanded Nanographite for Enhanced Lithium/sodium Storage. Journal of the American Chemical Society, 138, 14915-14922. https://doi.org/10.1021/jacs.6b06673 |
[13] | Bi, J., Wu, L., Li, J., Li, Z., Wang, X. and Fu, X. (2007) Simple Solvothermal Routes to Synthesize Nanocrystalline Bi2MoO6 Photocatalysts with Different Morphologies. Acta Materialia, 55, 4699-4705. https://doi.org/10.1016/j.actamat.2007.04.034 |
[14] | Li, X., Li, J., Zhang, Y. and Zhao, P. (2021) Synthesis of Ni-MOF Derived NiO/rGO Composites as Novel Electrode Materials for High Performance Supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, Article ID: 126653. https://doi.org/10.1016/j.colsurfa.2021.126653 |
[15] | Kavinkumar, T., Sivagurunathan, A.T. and Kim, D. (2023) Construction of Highly Transparent, Flexible, and Robust Solid-State Symmetric Supercapacitors Using NiO Electrodes Roughened by Conformal Atomic Layer Deposition. Applied Surface Science, 616, Article ID: 156453. https://doi.org/10.1016/j.apsusc.2023.156453 |
[16] | Patrick, J.S.J., Niranjana, S.R., Raja Ruban, M.J., et al. (2023) A Novel Synthesis Strategy for Hybrid Quaternary rGO/MnO2/NiO/CuO Nanocomposite as Electrode for Enduring Symmetric Supercapacitor Fabrication. Synthetic Metals, 293, Article ID: 117282. https://doi.org/10.1016/j.synthmet.2023.117282 |
[17] | Luo, L., Zhou, Y., Yan, W., Luo, L., Deng, J., Du, G., et al. (2021) Design and Construction of Hierarchical Sea Urchin-Like NiCo-LDH@ACF Composites for High-Performance Supercapacitors. Industrial Crops and Products, 171, Article ID: 113900. https://doi.org/10.1016/j.indcrop.2021.113900 |
[18] | Zheng, S.Q., Lim, S.S., Foo, C.Y., Haw, C.Y., Chiu, W.S., Chia, C.H., et al. (2023) Fabrication of Sodium and MoS2 Incorporated NiO and Carbon Nanostructures for Advanced Supercapacitor Application. Journal of Energy Storage, 63, Article ID: 106980. https://doi.org/10.1016/j.est.2023.106980 |
[19] | Samdani, K.J., Park, J.H., Joh, D.W. and Lee, K.T. (2018) Self-Assembled Bi2MoO6 Nanopetal Array on Carbon Spheres toward Enhanced Supercapacitor Performance. ACS Sustainable Chemistry & Engineering, 6, 16702-16712. https://doi.org/10.1021/acssuschemeng.8b03988 |
[20] | Wu, F., Wang, X., zheng, W., Gao, H., Hao, C. and Ge, C. (2017) Synthesis and Characterization of Hierarchical Bi2MoO6/Polyaniline Nanocomposite for All-Solid-State Asymmetric Supercapacitor. Electrochimica Acta, 245, 685-695. https://doi.org/10.1016/j.electacta.2017.05.165 |
[21] | Cao, Y., Zhang, J., Yang, W., Li, Y., Chen, H., Hao, Q., et al. (2024) Handy Preparation of a Carbon-Ni/NiO/Ni(OH)2 Composite and Its Application in High-Performance Supercapacitors. Electrochimica Acta, 497, Article ID: 144618. https://doi.org/10.1016/j.electacta.2024.144618 |
[22] | Mou, Y., He, Q., He, Y., Meng, C., Liu, H. and Li, L. (2024) Preparation of Petal-Like Structure NiO@ZIF-67 Nanocomposites for Application to High-Performance Supercapacitors. Journal of Solid State Electrochemistry. https://doi.org/10.1007/s10008-024-06120-0 |
[23] | Jalalah, M., Sasmal, A., Nayak, A.K. and Harraz, F.A. (2023) Rapid, External Acid-Free Synthesis of Bi2WO6 Nanocomposite for Efficient Supercapacitor Application. Journal of the Taiwan Institute of Chemical Engineers, 143, Article ID: 104697. https://doi.org/10.1016/j.jtice.2023.104697 |