|
颅骨游离骨瓣愈合的影响因素
|
Abstract:
由于自体骨瓣具有良好的组织相容性、易于获取以及能够实现原位重建等优点,颅骨游离骨瓣在颅面外科及神经外科中得到了广泛应用。尽管游离骨瓣存在缺乏血供、可能被吸收的风险,但在实际临床应用中,大多数游离颅骨骨瓣能够成功生长并愈合,愈合过程受到多种因素的影响。本文旨在对游离颅骨瓣移植后愈合的影响因素进行文献综述。
Free cranial bone flap is widely used in craniofacial surgery and neurosurgery because of its good histocompatibility, easy access and in situ reconstruction. Due to the lack of blood supply, the free bone flap has the risk of absorption. However, in practical clinical application, most of the free skull bone flap can grow and heal, and the healing process is affected by various factors. In this paper, the influencing factors of healing after free cranial flap transplantation were reviewed.
[1] | 马伦昆, 张智勇. 颅骨游离骨瓣移植后成活机制的研究进展[J]. 组织工程与重建外科, 2021, 17(3): 266-268. |
[2] | Giannoudis, P.V., Einhorn, T.A. and Marsh, D. (2007) Fracture Healing: The Diamond Concept. Injury, 38, S3-S6. https://doi.org/10.1016/s0020-1383(08)70003-2 |
[3] | Lu, C., Saless, N., Hu, D., Wang, X., Xing, Z., Hou, H., et al. (2011) Mechanical Stability Affects Angiogenesis during Early Fracture Healing. Journal of Orthopaedic Trauma, 25, 494-499. https://doi.org/10.1097/bot.0b013e31822511e0 |
[4] | Jagodzinski, M. and Krettek, C. (2007) Effect of Mechanical Stability on Fracture Healing—An Update. Injury, 38, S3-S10. https://doi.org/10.1016/j.injury.2007.02.005 |
[5] | Lienau, J., Schell, H., Duda, G.N., Seebeck, P., Muchow, S. and Bail, H.J. (2005) Initial Vascularization and Tissue Differentiation Are Influenced by Fixation Stability. Journal of Orthopaedic Research, 23, 639-645. https://doi.org/10.1016/j.orthres.2004.09.006 |
[6] | Glatt, V., Evans, C.H. and Tetsworth, K. (2017) A Concert between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing. Frontiers in Physiology, 7, Article 678. https://doi.org/10.3389/fphys.2016.00678 |
[7] | Augat, P., Hollensteiner, M. and von Rüden, C. (2021) The Role of Mechanical Stimulation in the Enhancement of Bone Healing. Injury, 52, S78-S83. https://doi.org/10.1016/j.injury.2020.10.009 |
[8] | Claes, L.E., Heigele, C.A., Neidlinger-Wilke, C., Kaspar, D., Seidl, W., Margevicius, K.J., et al. (1998) Effects of Mechanical Factors on the Fracture Healing Process. Clinical Orthopaedics and Related Research, 355, S132-S147. https://doi.org/10.1097/00003086-199810001-00015 |
[9] | Özerdem, Ö.R., Anlatici, R., Bahar, T., Kayaselçuk, F., Barutçu, Ö., Tuncer, I., et al. (2003) Roles of Periosteum, Dura, and Adjacent Bone on Healing of Cranial Osteonecrosis. Journal of Craniofacial Surgery, 14, 371-379. https://doi.org/10.1097/00001665-200305000-00016 |
[10] | Gosain, A.K., Gosain, S.A., Sweeney, W.M., Song, L. and Amarante, M.T.J. (2011) Regulation of Osteogenesis and Survival within Bone Grafts to the Calvaria: The Effect of the Dura versus the Pericranium. Plastic and Reconstructive Surgery, 128, 85-94. https://doi.org/10.1097/prs.0b013e31821740cc |
[11] | Zhai, Y., Zhou, Z., Xing, X., Nuzzle, M. and Zhang, X. (2025) Differential Bone and Vessel Type Formation at Superior and Dura Periosteum during Cranial Bone Defect Repair. Bone Research, 13, Article No. 8. https://doi.org/10.1038/s41413-024-00379-9 |
[12] | Lemperle, S.M., Calhoun, C.J., Curran, R.W. and Holmes, R.E. (1998) Bony Healing of Large Cranial and Mandibular Defects Protected from Soft-Tissue Interposition: A Comparative Study of Spontaneous Bone Regeneration, Osteoconduction, and Cancellous Autografting in Dogs. Plastic and Reconstructive Surgery, 101, 660-672. https://doi.org/10.1097/00006534-199803000-00013 |
[13] | Marupanthorn, K., Tantrawatpan, C., Kheolamai, P., Tantikanlayaporn, D. and Manochantr, S. (2017) Bone Morphogenetic Protein-2 Enhances the Osteogenic Differentiation Capacity of Mesenchymal Stromal Cells Derived from Human Bone Marrow and Umbilical Cord. International Journal of Molecular Medicine, 39, 654-662. https://doi.org/10.3892/ijmm.2017.2872 |
[14] | Sheng, M.H.-C., Zhou, X., Bonewald, L.F., Baylink, D.J. and Lau, K.-H.W. (2013) Disruption of the Insulin-Like Growth Factor-1 Gene in Osteocytes Impairs Developmental Bone Growth in Mice. Bone, 52, 133-144. https://doi.org/10.1016/j.bone.2012.09.027 |
[15] | Ritz, M., Graumann, U., Gutierrez, B., Hausmann, O. and E, (2010) Traumatic Spinal Cord Injury Alters Angiogenic Factors and TGF-Beta1 That May Affect Vascular Recovery. Current Neurovascular Research, 7, 301-310. https://doi.org/10.2174/156720210793180756 |
[16] | 刘松, 李文斌, 邵国, 张春阳, 冯士军. 硬脑膜在颅骨/脑膜/脑组织系统生长发育中的作用机制研究进展[J]. 天津医药, 2024, 52(11): 1226-1232. |
[17] | 寇正雄, 张海燕, 侯晓峰, 张占阅, 张安龙, 梅小龙, 叶小健, 张春阳. 硬脑膜对颅骨生长影响的研究进展[J]. 中国医刊, 2021, 56(10): 1059-1062. |
[18] | Hobar, C.P., Schreiber, J.S., McCarthy, J.G. and Thomas, P.A. (1993) The Role of the Dura in Cranial Bone Regeneration in the Immature Animal. Plastic and Reconstructive Surgery, 92, 405-410. https://doi.org/10.1097/00006534-199309000-00003 |
[19] | Gosain, A.K., Santoro, T.D., Song, L., Capel, C.C., Sudhakar, P.V. and Matloub, H.S. (2003) Osteogenesis in Calvarial Defects: Contribution of the Dura, the Pericranium, and the Surrounding Bone in Adult versus Infant Animals. Plastic and Reconstructive Surgery, 112, 515-527. https://doi.org/10.1097/01.prs.0000070728.56716.51 |
[20] | Greenwald, J.A., Mehrara, B.J., Spector, J.A., Fagenholz, P.J., Saadeh, P.B., Steinbrech, D.S., et al. (2000) Immature versus Mature Dura Mater: II. Differential Expression of Genes Important to Calvarial Reossification. Plastic and Reconstructive Surgery, 106, 630-638. https://doi.org/10.1097/00006534-200009030-00016 |
[21] | Lowery, J.W. and Rosen, V. (2018) The BMP Pathway and Its Inhibitors in the Skeleton. Physiological Reviews, 98, 2431-2452. https://doi.org/10.1152/physrev.00028.2017 |
[22] | Yazici, C., Takahata, M., Reynolds, D.G., Xie, C., Samulski, R.J., Samulski, J., et al. (2011) Self-Complementary AAV2.5-BMP2-Coated Femoral Allografts Mediated Superior Bone Healing versus Live Autografts in Mice with Equivalent Biomechanics to Unfractured Femur. Molecular Therapy, 19, 1416-1425. https://doi.org/10.1038/mt.2010.294 |
[23] | Burkus, J.K., Hei, S.E., Gornet, M.F. and Zdeblick, T.A. (2004) The Effectiveness of rhBMP-2 in Replacing Autograft: An Integrated Analysis of Three Human Spine Studies. Orthopedics, 27, 723-728. https://doi.org/10.3928/0147-7447-20040701-12 |
[24] | Guo, Y., Yuan, Y., Wu, L., Ho, T., Jing, J., Sugii, H., et al. (2018) BMP-IHH-Mediated Interplay between Mesenchymal Stem Cells and Osteoclasts Supports Calvarial Bone Homeostasis and Repair. Bone Research, 6, Article No. 30. https://doi.org/10.1038/s41413-018-0031-x |
[25] | Vural, A.C., Odabas, S., Korkusuz, P., Yar Sağlam, A.S., Bilgiç, E., Çavuşoğlu, T., et al. (2016) Cranial Bone Regeneration via BMP-2 Encoding Mesenchymal Stem Cells. Artificial Cells, Nanomedicine, and Biotechnology, 45, 544-550. https://doi.org/10.3109/21691401.2016.1160918 |
[26] | Zhou, T., Wang, F., Liu, K., Zhou, H. and Shang, J. (2024) An Injectable Carboxymethyl Chitosan-Based Hydrogel with Controlled Release of BMP-2 for Efficient Treatment of Bone Defects. International Journal of Biological Macromolecules, 282, Article 137120. https://doi.org/10.1016/j.ijbiomac.2024.137120 |
[27] | Durham, E.L., Howie, R.N., Hall, S., Larson, N., Oakes, B., Houck, R., et al. (2018) Optimizing Bone Wound Healing Using BMP2 with Absorbable Collagen Sponge and Talymed Nanofiber Scaffold. Journal of Translational Medicine, 16, Article No. 321. https://doi.org/10.1186/s12967-018-1697-y |
[28] | Zhang, C., Li, L., Feng, K., Fan, D., Xue, W. and Lu, J. (2017) ‘Repair’ Treg Cells in Tissue Injury. Cellular Physiology and Biochemistry, 43, 2155-2169. https://doi.org/10.1159/000484295 |
[29] | Ono, T. and Takayanagi, H. (2017) Osteoimmunology in Bone Fracture Healing. Current Osteoporosis Reports, 15, 367-375. https://doi.org/10.1007/s11914-017-0381-0 |
[30] | Okamoto, K., Nakashima, T., Shinohara, M., Negishi-Koga, T., Komatsu, N., Terashima, A., et al. (2017) Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews, 97, 1295-1349. https://doi.org/10.1152/physrev.00036.2016 |
[31] | Einhorn, T.A. and Gerstenfeld, L.C. (2014) Fracture Healing: Mechanisms and Interventions. Nature Reviews Rheumatology, 11, 45-54. https://doi.org/10.1038/nrrheum.2014.164 |
[32] | Al-Sebaei, M.O., Daukss, D.M., Belkina, A.C., Kakar, S., Wigner, N.A., Cusher, D., et al. (2014) Role of Fas and Treg Cells in Fracture Healing as Characterized in the Fas-Deficient (Lpr) Mouse Model of Lupus. Journal of Bone and Mineral Research, 29, 1478-1491. https://doi.org/10.1002/jbmr.2169 |
[33] | Chen, R., Zhang, X., Li, B., Tonetti, M.S., Yang, Y., Li, Y., et al. (2024) Progranulin-Dependent Repair Function of Regulatory T Cells Drives Bone-Fracture Healing. Journal of Clinical Investigation, 135, e180679. https://doi.org/10.1172/jci180679 |
[34] | 苟茂荣. 蝶骨平台-鞍结节-鞍底微骨瓣在经鼻内镜入路颅底重建中的结局及影响因素研究[D]: [硕士学位论文]. 延安: 延安大学, 2024. |
[35] | 周卓亚. 原位骨瓣在内镜扩大经蝶入路颅底重建的应用[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2021. |