|
林奇综合征相关的结直肠癌研究进展
|
Abstract:
林奇综合征(Lynch syndrome)是一种罕见的遗传性癌症易感综合征,其特征是易患多种癌症,包括消化道、泌尿道、肾脏、子宫内膜、卵巢、脑和前列腺的肿瘤、以及皮脂腺皮肤肿瘤,具体取决于所涉及的基因。肿瘤可能发生在任何年龄段,但往往发生在年轻人,具有发病早、多原发、遗传性等特点。遗传方式是常染色体显性遗传。结直肠癌(Colorectal Cancer, CRC),又称大肠癌,是指大肠上皮来源的原发性恶性肿瘤,包括结肠癌和直肠癌,是癌症死亡的第二大原因。其中遗传性CRC占所有CRC患者的5%~6%,根据结直肠内息肉的数量,遗传性CRC通常被分为非息肉病性(包括无息肉或少量息肉)和息肉病性(通常数十,数百或更多),前者包括Lynch综合征、家族性CRCX型,后者则包括家族性腺瘤性息肉病、MUTYH相关性息肉病、黑斑息肉综合征和幼年性息肉病综合征等。Lynch综合征,约占所有CRC患者中的2%~4%,是最常见的遗传性CRC综合征,以常染色体显性遗传,可引起结直肠及其他部位(如子宫内膜、卵巢、胃等)发生肿瘤的风险显著高于一般风险人群。遗传性CRC的尽早诊断并寻找血缘亲属中尚未发病的突变携带者,可以帮助临床医师及时采取干预措施,从而改善遗传性CRC患者及其家庭的预后。
Lynch syndrome is a rare hereditary cancer predisposition syndrome characterized by a high susceptibility to multiple cancers, including tumors of the digestive tract, urinary tract, kidneys, endometrium, ovaries, brain, and prostate, as well as sebaceous skin tumors, depending on the involved genes. Tumors can occur at any age but often in young people, with early onset, multiple primary tumors, and hereditary characteristics. The mode of inheritance is autosomal dominant. Colorectal cancer (CRC), also known as large intestine cancer, refers to primary malignant tumors derived from the epithelium of the large intestine, including colon cancer and rectal cancer, and is the second leading cause of cancer death. Among them, hereditary CRC accounts for 5% to 6% of all CRC patients. According to the number of polyps in the colorectum, hereditary CRC is usually divided into non-polyposis (including no polyps or a small number of polyps) and polyposis (usually dozens, hundreds or more), the former including Lynch syndrome and familial CRCX type, and the latter including familial adenomatous polyposis, MUTYH-associated polyposis, Peutz-Jeghers syndrome, and juvenile polyposis syndrome, etc. Lynch syndrome, accounting for 2% to 4% of all CRC patients, is the most common hereditary CRC syndrome, which is inherited in an autosomal dominant manner and significantly increases the risk of developing tumors in the colorectum and other sites (such as endometrium, ovaries, stomach, etc.) compared to the general population. Early diagnosis of hereditary CRC and identification of asymptomatic mutation carriers among blood relatives can help clinicians take timely intervention measures, thereby improving the prognosis of hereditary CRC patients and their families.
[1] | Lynch, H.T., Snyder, C.L., Shaw, T.G., Heinen, C.D. and Hitchins, M.P. (2015) Milestones of Lynch Syndrome: 1895-2015. Nature Reviews Cancer, 15, 181-194. https://doi.org/10.1038/nrc3878 |
[2] | Latham, A., Srinivasan, P., Kemel, Y., Shia, J., Bandlamudi, C., Mandelker, D., et al. (2019) Microsatellite Instability Is Associated with the Presence of Lynch Syndrome Pan-Cancer. Journal of Clinical Oncology, 37, 286-295. https://doi.org/10.1200/jco.18.00283 |
[3] | Huang, R., Deng, X., Zhang, Z., Wen, Q. and Li, D. (2022) Lynch Syndrome-Associated Endometrial Cancer with Combined EPCAM-MSH2 Deletion: A Case Report. Frontiers in Oncology, 12, Article 856452. https://doi.org/10.3389/fonc.2022.856452 |
[4] | Olave, M.C. and Graham, R.P. (2021) Mismatch Repair Deficiency: The What, How and Why It Is Important. Genes, Chromosomes and Cancer, 61, 314-321. https://doi.org/10.1002/gcc.23015 |
[5] | Nádorvári, M.L., Lotz, G., Kulka, J., Kiss, A. and Tímár, J. (2024) Microsatellite Instability and Mismatch Repair Protein Deficiency: Equal Predictive Markers? Pathology and Oncology Research, 30, Article 1611719. https://doi.org/10.3389/pore.2024.1611719 |
[6] | Park, P.H., Keith, K., Calendo, G., Jelinek, J., Madzo, J., Gharaibeh, R.Z., et al. (2024) Association between Gut Microbiota and CPG Island Methylator Phenotype in Colorectal Cancer. Gut Microbes, 16, Article 2363012. https://doi.org/10.1080/19490976.2024.2363012 |
[7] | Bonadona, V., Bonaïti, B., Olschwang, S., Grandjouan, S., Huiart, L., Longy, M., et al. (2011) Cancer Risks Associated with Germline Mutations in MLH1, MSH2, and MSH6 Genes in Lynch Syndrome. Journal of the American Medical Association, 305, 2304-2310. |
[8] | Samadder, N.J., Smith, K.R., Wong, J., Thomas, A., Hanson, H., Boucher, K., et al. (2017) Cancer Risk in Families Fulfilling the Amsterdam Criteria for Lynch Syndrome. JAMA Oncology, 3, 1697-1701. https://doi.org/10.1001/jamaoncol.2017.0769 |
[9] | Umar, A., Boland, C.R., Terdiman, J.P., Syngal, S., Chapelle, A.D.L., Ruschoff, J., et al. (2004) Revised Bethesda Guidelines for Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) and Microsatellite Instability. Journal of the National Cancer Institute, 96, 261-268. https://doi.org/10.1093/jnci/djh034 |
[10] | Cohen, S.A., Pritchard, C.C. and Jarvik, G.P. (2019) Lynch Syndrome: From Screening to Diagnosis to Treatment in the Era of Modern Molecular Oncology. Annual Review of Genomics and Human Genetics, 20, 293-307. https://doi.org/10.1146/annurev-genom-083118-015406 |
[11] | Rosty, C., Clendenning, M., Walsh, M.D., Eriksen, S.V., Southey, M.C., Winship, I.M., et al. (2016) Germline Mutations in PMS2 and MLH1 in Individuals with Solitary Loss of PMS2 Expression in Colorectal Carcinomas from the Colon Cancer Family Registry Cohort. BMJ Open, 6, e010293. https://doi.org/10.1136/bmjopen-2015-010293 |
[12] | Liu, M., Liu, Q., Hu, K., Dong, Y., Sun, X., Zou, Z., et al. (2024) Colorectal Cancer with BRAF V600E Mutation: Trends in Immune Checkpoint Inhibitor Treatment. Critical Reviews in Oncology/Hematology, 204, Article 104497. https://doi.org/10.1016/j.critrevonc.2024.104497 |
[13] | Losso, G.M., Moraes, R.d.S., Gentili, A.C. and Messias-Reason, I.T. (2012) Instabilidade de microssatélite—MSI nos marcadores (BAT26, BAT25, D2s123, D5S346, D17S250) no câncer de reto. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 25, 240-244. https://doi.org/10.1590/s0102-67202012000400006 |
[14] | Park, Y., Nam, S.K., Seo, S.H., Park, K.U., Oh, H.J., Park, Y.S., et al. (2023) Comprehensive Study of Microsatellite Instability Testing and Its Comparison with Immunohistochemistry in Gastric Cancers. Journal of Gastric Cancer, 23, 264-274. https://doi.org/10.5230/jgc.2023.23.e5 |
[15] | Schneider, R., Fürst, A. and Möslein, G. (2012) Das Lynch-Syndrom—Epidemiologie, Klinik, Genetik, Screening, Therapie. Zeitschrift für Gastroenterologie, 50, 217-225. https://doi.org/10.1055/s-0031-1281933 |
[16] | Song, J., Han, T., Qian, L., Zhu, J., Qiao, Y., Liu, S., et al. (2024) A Decade-Long Study on Pathological Distinctions of Resectable Early versus Late Onset Colorectal Cancer and Optimal Screening Age Determination. Scientific Reports, 14, Article No. 27335. https://doi.org/10.1038/s41598-024-76951-4 |
[17] | Biller, L.H., Creedon, S.A., Klehm, M. and Yurgelun, M.B. (2022) Lynch Syndrome-Associated Cancers beyond Colorectal Cancer. Gastrointestinal Endoscopy Clinics of North America, 32, 75-93. https://doi.org/10.1016/j.giec.2021.08.002 |
[18] | Roudko, V., Cimen Bozkus, C., Greenbaum, B., Lucas, A., Samstein, R. and Bhardwaj, N. (2021) Lynch Syndrome and MSI-H Cancers: From Mechanisms to “Off-the-Shelf” Cancer Vaccines. Frontiers in Immunology, 12, Article 757804. https://doi.org/10.3389/fimmu.2021.757804 |
[19] | Chalabi, M., Verschoor, Y.L., Tan, P.B., Balduzzi, S., Van Lent, A.U., Grootscholten, C., et al. (2024) Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair-Deficient Colon Cancer. New England Journal of Medicine, 390, 1949-1958. https://doi.org/10.1056/nejmoa2400634 |
[20] | Drogan, C. and Kupfer, S.S. (2022) Colorectal Cancer Screening Recommendations and Outcomes in Lynch Syndrome. Gastrointestinal Endoscopy Clinics of North America, 32, 59-74. https://doi.org/10.1016/j.giec.2021.08.001 |
[21] | Zhang, X., Wu, T., Cai, X., Dong, J., Xia, C., Zhou, Y., et al. (2022) Neoadjuvant Immunotherapy for MSI-H/dMMR Locally Advanced Colorectal Cancer: New Strategies and Unveiled Opportunities. Frontiers in Immunology, 13, Article 795972. https://doi.org/10.3389/fimmu.2022.795972 |
[22] | Marabelle, A., Le, D.T., Ascierto, P.A., Di Giacomo, A.M., De Jesus-Acosta, A., Delord, J., et al. (2020) Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology, 38, 1-10. https://doi.org/10.1200/jco.19.02105 |
[23] | Lenz, H., Van Cutsem, E., Luisa Limon, M., Wong, K.Y.M., Hendlisz, A., Aglietta, M., et al. (2022) First-Line Nivolumab plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II Checkmate 142 Study. Journal of Clinical Oncology, 40, 161-170. https://doi.org/10.1200/jco.21.01015 |