|
糖尿病性心肌病代谢紊乱相关研究进展
|
Abstract:
糖尿病性心肌病(diabetes cardiomyopathy, DCM)是一类与冠心病、高血压、瓣膜病等无关的特异性心肌病。DCM以心肌代谢紊乱、心肌纤维化及肥大、心肌细胞坏死等病理变化为主要特征,逐渐演变为收缩功能障碍,最终引发心力衰竭死亡。随着糖尿病的患病率的上升,DCM的高致死率受到越来越多的关注。糖脂代谢紊乱与DCM的发生、发展密切相关,目前关于DCM糖脂代谢紊乱方面的相关研究发现,葡萄糖转运体和脂质转运体的相互易位是糖尿病心肌病发病的重要基础。本文主要从糖脂代谢紊乱这一视角出发,对糖尿病性心肌病发病机制的最新研究进展进行系统性综述。
Diabetic cardiomyopathy (DCM) is a kind of specific cardiomyopathy that has nothing to do with coronary heart disease, hypertension and valvular disease. DCM is mainly characterized by pathological changes such as myocardial metabolism disorder, myocardial fibrosis and hypertrophy, and myocardial cell necrosis, which gradually evolves into systolic dysfunction and eventually leads to heart failure and death. With the increasing prevalence of diabetes mellitus, the high fatality rate of DCM has attracted more and more attention. The disorder of glucose and lipid metabolism plays an important role in the pathogenesis of DCM. Current studies on the disorder of glucose and lipid metabolism in DCM have found that the mutual translocation of glucose transporters and lipid transporters is an important basis for the pathogenesis of diabetic cardiomyopathy. In this paper, the latest research progress on the pathogenesis of diabetic cardiomyopathy was systematically reviewed from the perspective of the disorder of glucose and lipid metabolism.
[1] | Magliano, D.J. and Boyko, E.J. (2021) IDF Diabetes Atlas 10th Edition Scientific Committee. International Diabetes Federation. |
[2] | Park, J.J. (2021) Epidemiology, Pathophysiology, Diagnosis and Treatment of Heart Failure in Diabetes. Diabetes & Metabolism Journal, 45, 146-157. https://doi.org/10.4093/dmj.2020.0282 |
[3] | Siao, W.Z., Chen, Y.H., Tsai, C.F., Lee, C.M. and Jong, G.P. (2022) Diabetes Mellitus and Heart Failure. Journal of Personalized Medicine, 12, Article 1698. https://doi.org/10.3390/jpm12101698 |
[4] | Yap, J., Tay, W.T., Teng, T.K., Anand, I., Richards, A.M., Ling, L.H., MacDonald, M.R., Chandramouli, C., Tromp, J., Siswanto, B.B., et al. (2019) Association of Diabetes Mellitus on Cardiac Remodeling, Quality of Life, and Clinical Outcomes in Heart Failure with Reduced and Preserved Ejection Fraction. Journal of the American Heart Association, 8, e013114. https://doi.org/10.1161/JAHA.119.013114 |
[5] | Lee, H.J., Kim, H.K., Kim, B.S., Han, K.D., Rhee, T.M., Park, J.B., Lee, H., Lee, S.P. and Kim, Y.J. (2022) Impact of Diabetes Mellitus on the Outcomes of Subjects with Hypertrophic Cardiomyopathy: A Nationwide Cohort Study. Diabetes Research and Clinical Practice, 186, Article 109838. https://doi.org/10.1016/j.diabres.2022.109838 |
[6] | Bertrand, L., Horman, S., Beauloye, C. and Vanoverschelde, J.L. (2008) Insulin Signalling in the Heart. Cardiovascular Research, 79, 238-248. https://doi.org/10.1093/cvr/cvn093 |
[7] | Abel, E.D. (2004) Glucose Transport in the Heart. Frontiers in Bioscience, 9, 201-215. https://doi.org/10.2741/1216 |
[8] | Olson, A.L. and Pessin, J.E. (1996) Structure, Function, and Regulation of the Mammalian Facilitative Glucose Transporter Gene Family. Annual Review of Nutrition, 16, 235-256. https://doi.org/10.1146/annurev.nu.16.070196.001315 |
[9] | Fischer, Y., Thomas, J., Sevilla, L., Muñoz, P., Becker, C., Holman, G., Kozka, I.J., Palacín, M., Testar, X., Kammermeier, H. and Zorzano, A. (1997) Insulin-Induced Recruitment of Glucose Transporter 4 (GLUT4) and GLUT1 in Isolated Rat Cardiac Myocytes. Evidence of the Existence of Different Intracellular GLUT4 Vesicle Populations. Journal of Biological Chemistry, 272, 7085-7092. https://doi.org/10.1074/jbc.272.11.7085 |
[10] | Calera, M.R., Martinez, C., Liu, H., et al. (1998) Insulin Increases the Association of Akt-2 with Glut4-Containing Vesicles. Journal of Biological Chemistry, 273, 7201-7204. https://doi.org/10.1074/jbc.273.13.7201 |
[11] | Jia, G., DeMarco, V.G. and Sowers, J.R. (2016) Insulin Resistance and Hyperinsulinaemia in Diabetic Cardiomyopathy. Nature Reviews Endocrinology, 12, 144-153. https://doi.org/10.1038/nrendo.2015.216 |
[12] | Chen, C.Y., Chen, J., He, L. and Stiles, B.L. (2018) PTEN: Tumor Suppressor and Metabolic Regulator. Frontiers in Endocrinology, 9, Article 338. https://doi.org/10.3389/fendo.2018.00338 |
[13] | Gum, R.J., Gaede, L.L., Sandra, L., et al. (2003) Reduction of Protein Tyrosine Phosphatase 1B Increases Insulin-Dependent Signaling in ob/ob Mice. Diabetes, 52, 21-28. https://doi.org/10.2337/diabetes.52.1.21 |
[14] | Koh, H.J., Toyoda, T., Didesch, M.M., et al. (2013) Tribbles 3 Mediates Endoplasmic Reticulum Stress-Induced Insulin Resistance in Skeletal Muscle. Nature Communications, 4, Article 1871. https://doi.org/10.1038/ncomms2851 |
[15] | Gu, J., Yan, X., Dai, X., et al. (2018) Metallothionein Preserves Akt2 Activity and Cardiac Function via Inhibiting TRB3 in Diabetic Hearts. Diabetes, 67, 507-517. https://doi.org/10.2337/db17-0219 |
[16] | Zhang, Y., Chen, M., Tao, Y., Chu, B., Ma, Y., Lu, K. and Sun, H. (2022) Natural 8-C-Ascorbyl-(−)-Epigallocatechin as Antidiabetic Agent: α-Glucosidase and PTP-1B Signaling Pathway dual Regulators. Fitoterapia, 162, Article 105263. https://doi.org/10.1016/j.fitote.2022.105263 |
[17] | Lopaschuk, G.D., Karwi, Q.G., Tian, R., Wende, A.R. and Abel, E.D. (2021) Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128, 1487-1513. https://doi.org/10.1161/CIRCRESAHA.121.318241 |
[18] | Atkinson, L.L., Kozak, R., Kelly, S.E., Onay Besikci, A., Russell, J.C. and Lopaschuk, G.D. (2003) Potential Mechanisms and Consequences of Cardiac Triacylglycerol Accumulation in Insulin-Resistant Rats. American Journal of Physiology-Endocrinology and Metabolism, 284, E923-E930. https://doi.org/10.1152/ajpendo.00360.2002 |
[19] | Luiken, J.J., Glatz, J.F. and Neumann, D. (2015) Cardiac Contraction-Induced GLUT4 Translocation Requires Dual Signaling Input. Trends in Endocrinology & Metabolism, 26, 404-410. https://doi.org/10.1016/j.tem.2015.06.002 |
[20] | Sun, A., Simsek Papur, O., Dirkx, E., Wong, L., Sips, T., Wang, S., Strzelecka, A., Nabben, M., Glatz, J.F.C., Neumann, D. and Luiken, J.J.F.P. (2021) Phosphatidylinositol 4-Kinase IIIβ Mediates Contraction-Induced GLUT4 Translocation and Shows Its Anti-Diabetic Action in Cardiomyocytes. Cellular and Molecular Life Sciences, 78, 2839-2856. https://doi.org/10.1007/s00018-020-03669-7 |
[21] | Luiken, J.J., Glatz, J.F. and Neumann, D. (2015) Cardiac Contraction-Induced GLUT4 Translocation Requires Dual Signaling Input. Trends in Endocrinology & Metabolism, 26, 404-410. https://doi.org/10.1016/j.tem.2015.06.002 |
[22] | Buchanan, J., Mazumder, P.K., Hu, P., Chakrabarti, G., Roberts, M.W., Yun, U.J., Cooksey, R.C., Litwin, SE. and Abel, E.D. (2005) Reduced Cardiac Efficiency and Altered Substrate Metabolism Precedes the Onset of Hyperglycemia and Contractile Dysfunction in Two Mouse Models of Insulin Resistance and Obesity. Endocrinology, 146, 5341-5349. https://doi.org/10.1210/en.2005-0938 |
[23] | Coort, S.L., Bonen, A., van der Vusse, G.J., Glatz, J.F. and Luiken, J.J. (2007) Cardiac Substrate Uptake and Metabolism in Obesity and Type-2 Diabetes: Role of Sarcolemmal Substrate Transporters. Molecular and Cellular Biochemistry, 299, 5-18. https://doi.org/10.1007/s11010-005-9030-5 |
[24] | Prabhudas, M., Bowdish, D., Drickamer, K., Febbraio, M., Herz, J., Kobzik, L., Krieger, M., Loike, J., Means, T.K., Moestrup, S.K., Post, S., Sawamura, T., Silverstein, S., Wang, X.Y. and El Khoury, J. (2014) Standardizing Scavenger Receptor Nomenclature. The Journal of Immunology, 192, 1997-2006. https://doi.org/10.4049/jimmunol.1490003 |
[25] | Glatz, J.F.C. and Luiken, J.J.F.P. (2018) Dynamic Role of the Transmembrane Glycoprotein CD36 (SR-B2) in Cellular Fatty Acid Uptake and Utilization. Journal of Lipid Research, 59, 1084-1093. https://doi.org/10.1194/jlr.R082933 |
[26] | Glatz, J.F. and Luiken, J.J. (2017) From Fat to FAT (CD36/SR-B2): Understanding the Regulation of Cellular Fatty Acid Uptake. Biochimie, 136, 21-26. https://doi.org/10.1016/j.biochi.2016.12.007 |
[27] | García-Rúa, V., Otero, M.F., Lear, P.V., Rodríguez-Penas, D., Feijóo-Bandín, S., Noguera-Moreno, T., Calaza, M., Álvarez-Barredo, M., Mosquera-Leal, A., Parrington, J., Brugada, J., Portolés, M., Rivera, M., González-Juanatey, J.R. and Lago, F. (2012) Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart. PLOS One, 7, e37505. https://doi.org/10.1371/journal.pone.0037505 |
[28] | Paolillo, S., Marsico, F., Prastaro, M., Renga, F., Esposito, L., De Martino, F., Di Napoli, P., Esposito, I., Ambrosio, A., Ianniruberto, M., Mennella, R., Paolillo, R. and Gargiulo, P. (2019) Diabetic Cardiomyopathy: Definition, Diagnosis, and Therapeutic Implications. Heart Failure Clinics, 15, 341-347. https://doi.org/10.1016/j.hfc.2019.02.003 |
[29] | Steinbusch, L.K., Schwenk, R.W., Ouwens, D.M., Diamant, M., Glatz, J.F. and Luiken, J.J. (2011) Subcellular Trafficking of the Substrate Transporters GLUT4 and CD36 in Cardiomyocytes. Cellular and Molecular Life Sciences, 68, 2525-2538. https://doi.org/10.1007/s00018-011-0690-x |
[30] | Glatz, J.F.C., Luiken, J.J.F.P. and Nabben, M. (2020) CD36 (SR-B2) As a Target to Treat Lipid Overload-Induced Cardiac Dysfunction. Journal of Lipid and Atherosclerosis, 9, 66-78. https://doi.org/10.12997/jla.2020.9.1.66 |
[31] | Chistiakov, D.A., Orekhov, A.N. and Bobryshev, Y.V. (2017) The Impact of FOXO-1 to Cardiac Pathology in Diabetes Mellitus and Diabetes-Related Metabolic Abnormalities. International Journal of Cardiology, 245, 236-244. https://doi.org/10.1016/j.ijcard.2017.07.096 |
[32] | Griffin, E., Re, A., Hamel, N., Fu, C., Bush, H., McCaffrey, T. and Asch, A.S. (2001) A Link between Diabetes and Atherosclerosis: Glucose Regulates Expression of CD36 at the Level of Translation. Nature Medicine, 7, 840-846. https://doi.org/10.1038/89969 |
[33] | Angin, Y., Steinbusch, L.K., Simons, P.J., Greulich, S., Hoebers, N.T., Douma, K., van Zandvoort, M.A., Coumans, W.A., Wijnen, W., Diamant, M., Ouwens, D.M., Glatz, J.F. and Luiken, J.J. (2012) CD36 Inhibition Prevents Lipid Accumulation and Contractile Dysfunction in Rat Cardiomyocytes. Biochemical Journal, 448, 43-53. https://doi.org/10.1042/BJ20120060 |
[34] | Finck, B.N., Lehman, J.J., Leone, T.C., Welch, M.J., Bennett, M.J., Kovacs, A., Han, X., Gross, R.W., Kozak, R., Lopaschuk, G.D. and Kelly, D.P. (2002) The Cardiac Phenotype Induced by PPARα Overexpression mimics that Caused by Diabetes Mellitus. Journal of Clinical Investigation, 109, 121-130. https://doi.org/10.1172/JCI0214080 |
[35] | Steinmetz, M., Quentin, T., Poppe, A., Paul, T. and Jux, C. (2005) Changes in Expression Levels of Genes Involved in Fatty Acid Metabolism: Upregulation of All Three Members of the PPAR Family (α, γ, δ) and the Newly Described Adiponectin Receptor 2, But Not Adiponectin Receptor 1 during Neonatal Cardiac Development of the Rat. Basic Research in Cardiology, 100, 263-269. https://doi.org/10.1007/s00395-005-0520-0 |
[36] | Yamashita, S., Masuda, D. and Matsuzawa, Y. (2020) Pemafibrate, a New Selective PPARα Modulator: Drug Concept and Its Clinical Applications for Dyslipidemia and Metabolic Diseases. Current Atherosclerosis Reports, 22, Article No. 5. https://doi.org/10.1007/s11883-020-0823-5 |
[37] | Ramírez, E., Picatoste, B., González-Bris, A., Oteo, M., Cruz, F., Caro-Vadillo, A., Egido, J., Tuñón, J., Morcillo, M.A. and Lorenzo, Ó. (2018) Sitagliptin Improved Glucose Assimilation in Detriment of Fatty-Acid Utilization in Experimental Type-II Diabetes: Role of GLP-1 Isoforms in Glut4 Receptor Trafficking. Cardiovascular Diabetology, 17, Article No. 12. https://doi.org/10.1186/s12933-017-0643-2 |
[38] | Shulman, G.I. (2000) Cellular Mechanisms of Insulin Resistance. Journal of Clinical Investigation, 106, 171-176. https://doi.org/10.1172/JCI10583 |
[39] | 陈艳艳, 周洁, 卢作维, 李梦颖, 马溪悦, 李晓苗. 糖尿病心肌病发病机制及治疗研究进展[J]. 解放军医学杂志, 2023, 48(8): 957-964. |
[40] | Franssen, C., Chen, S., Unger, A., et al. (2016) Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure with Preserved Ejection Fraction. JACC: Heart Failure, 4, 312-324. https://doi.org/10.1016/j.jchf.2015.10.007 |
[41] | Liu, Y., Steinbusch, L.K.M., Nabben, M., Kapsokalyvas, D., van Zandvoort, M., Schönleitner, P., Antoons, G., Simons, P.J., Coumans, W.A., Geomini, A., Chanda, D., Glatz, J.F.C., Neumann, D. and Luiken, J.J.F.P. (2017) Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward into Insulin Resistance and Contractile Dysfunction. Diabetes, 66, 1521-1534. https://doi.org/10.2337/db16-0727 |
[42] | Luiken, J.J.F.P., Nabben, M., Neumann, D. and Glatz, J.F.C. (2020) Understanding the Distinct Subcellular Trafficking of CD36 and GLUT4 during the Development of Myocardial Insulin Resistance. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866, Article 165775. https://doi.org/10.1016/j.bbadis.2020.165775 |