|
一种优于动力次季节温度预测的机器学习模型
|
Abstract:
可靠的次季节温度预测对极端温度事件的防灾减灾至关重要。然而,现有的次季节温度预测动力模型常受到初值问题和边值问题的影响,导致其预报能力相对薄弱。尽管近年来机器学习模型在次季节预测中逐渐展示出超越动力模型的潜力,但中国次季节温度预测仍主要依赖于动力学模型。鉴于此,本研究基于Lasso (Multi-task Lasso)机器学习算法,构建了覆盖中国所有格点的次季节温度预测模型,并采用余弦相似度指标评估Lasso和CFSv2 (The Climate Forecast System version 2)动力模型在2018~2022年测试期内的预测性能表现。结果表明:Lasso在整体预测技能上显著优于CFSv2,其在未来3~4周和5~6周的平均余弦相似度较CFSv2分别提升了0.33和0.34;并且,在常规温度情景下,Lasso能够更精准地捕捉温度变化的规律,80%以上月份的平均CS高于CFSv2;其仅在极端低温情景下存在一定局限性,预测技能略逊于CFSv2。
Reliable subseasonal temperature forecasting plays an important part in extreme temperature events prevention and mitigation. However, current dynamical models for subseasonal temperature forecasting are often influenced by initial value and boundary value problems, resulting in relatively weak forecasting performance. Although machine learning models have shown potential in surpassing dynamical models for subseasonal forecasting in recent years, subseasonal temperature forecasting in China still mainly relies on dynamical models. Under this background, the study constructs a subseasonal temperature forecasting model covering 957 grid points across China based on the Lasso (Multi-task Lasso) machine learning algorithm and uses the cosine similarity metric to evaluate the performance between the Lasso and CFSv2 (The Climate Forecast System version 2) dynamic model during the test period from 2018 to 2022. The results show that the Lasso significantly outperforms CFSv2 in overall forecasting performance. The average cosine similarity of the Lasso is 0.33 and 0.34 higher than the CFSv2 at the forecast horizon of weeks 3~4 and 5~6, respectively. Moreover, in normal temperature scenarios, the Lasso can more accurately capture temperature variation patterns with the average cosine similarity for over 80% of the months higher than that of the CFSv2. However, the Lasso has some limitations in forecasting extreme low temperature scenarios, where its forecasting skill is slightly inferior to that of the CFSv2.
[1] | Rahmstorf, S. and Coumou, D. (2011) Increase of Extreme Events in a Warming World. Proceedings of the National Academy of Sciences of the United States of America, 108, 17905-17909. https://doi.org/10.1073/pnas.1101766108 |
[2] | 廖承红. 全球城市升温速度惊人[J]. 生态经济, 2022, 38(1): 5-8. |
[3] | Yang, Z., Wang, Q. and Liu, P. (2018) Extreme Temperature and Mortality: Evidence from China. International Journal of Biometeorology, 63, 29-50. https://doi.org/10.1007/s00484-018-1635-y |
[4] | White, C.J., Carlsen, H., Robertson, A.W., Klein, R.J.T., Lazo, J.K., Kumar, A., et al. (2017) Potential Applications of Subseasonal‐to‐Seasonal (S2S) Predictions. Meteorological Applications, 24, 315-325. https://doi.org/10.1002/met.1654 |
[5] | 赵昌帅. 黑龙江省极端温度与降水特征及其对春玉米产量的影响[D]: [硕士学位论文]. 哈尔滨: 东北农业大学, 2023. |
[6] | Barnston, A.G., Tippett, M.K., L'Heureux, M.L., Li, S. and DeWitt, D.G. (2012) Skill of Real-Time Seasonal ENSO Model Predictions during 2002-11: Is Our Capability Increasing? Bulletin of the American Meteorological Society, 93, 631-651. https://doi.org/10.1175/bams-d-11-00111.1 |
[7] | Lorenc, A. (1986) Analysis Methods for Numerical Weather Prediction. Quarterly Journal of the Royal Meteorological Society, 112, 1177-1194. https://doi.org/10.1256/smsqj.47413 |
[8] | Tao, L., Cui, Z., He, Y. and Yang, D. (2024) An Explainable Multiscale LSTM Model with Wavelet Transform and Layer-Wise Relevance Propagation for Daily Streamflow Forecasting. Science of the Total Environment, 929, Article ID: 172465. https://doi.org/10.1016/j.scitotenv.2024.172465 |
[9] | 陶俐芝. 月降水量预报的多尺度支持向量机模型[D]: [硕士学位论文]. 长沙: 湖南师范大学, 2018. |
[10] | 凌铭, 肖丽英, 赵嘉, 等. 基于SVM-CEEMDAN-BiLSTM模型的日降水量预测[J]. 人民珠江, 2023, 44(9): 61-68. |
[11] | Merryfield, W.J., Baehr, J., Batté, L., et al. (2020) Current and Emerging Developments in Subseasonal to Decadal Prediction. Bulletin of the American Meteorological Society, 101, E869-E896. |
[12] | 孙可可, 吴小飞. FGOALS-f2气候预测系统对西南地区持续性极端降水的次季节预测评估[J]. 高原山地气象研究, 2024, 44(1): 21-30. |
[13] | He, S., Li, X., DelSole, T., Ravikumar, P. and Banerjee, A. (2021) Sub-Seasonal Climate Forecasting via Machine Learning: Challenges, Analysis, and Advances. Proceedings of the AAAI Conference on Artificial Intelligence, 35, 169-177. https://doi.org/10.1609/aaai.v35i1.16090 |
[14] | He, R., Zhang, L. and Chew, A.W.Z. (2024) Data-Driven Multi-Step Prediction and Analysis of Monthly Rainfall Using Explainable Deep Learning. Expert Systems with Applications, 235, Article ID: 121160. https://doi.org/10.1016/j.eswa.2023.121160 |
[15] | 成玉祥, 肖丽英, 王萍根, 等. 基于Attention-BiLSTM混合模型的月尺度降水量预测[J]. 人民珠江, 2024, 45(6): 73-81. |
[16] | Mouatadid, S., Orenstein, P., Flaspohler, G., Cohen, J., Oprescu, M., Fraenkel, E., et al. (2023) Adaptive Bias Correction for Improved Subseasonal Forecasting. Nature Communications, 14, Article No. 3482. https://doi.org/10.1038/s41467-023-38874-y |
[17] | National Academies of Sciences, Engineering & Medicine (2016) Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal Forecasts. National Academies Press. https://doi.org/10.17226/21873 |
[18] | Faijaroenmongkol, T., Sarinnapakorn, K. and Vateekul, P. (2023) Sub-Seasonal Precipitation Bias-Correction in Thailand Using Attention U-Net with Seasonal and Meteorological Effects. IEEE Access, 11, 135463-135475. https://doi.org/10.1109/access.2023.3337998 |
[19] | Kiefer, S.M., Lerch, S., Ludwig, P. and Pinto, J.G. (2023) Can Machine Learning Models Be a Suitable Tool for Predicting Central European Cold Winter Weather on Subseasonal to Seasonal Time Scales? Artificial Intelligence for the Earth Systems, 2, e230020. https://doi.org/10.1175/aies-d-23-0020.1 |
[20] | He, S., Li, X., Trenary, L., Cash, B.A., DelSole, T. and Banerjee, A. (2022) Learning and Dynamical Models for Sub-Seasonal Climate Forecasting: Comparison and Collaboration. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 4495-4503. https://doi.org/10.1609/aaai.v36i4.20372 |
[21] | Zhou, X.X., Ding, Y.H. and Wang, P.X. (2010) Moisture Transport in the Asian Summer Monsoon Region and Its Relationship with Summer Precipitation in China. Acta Meteorologica Sinica, 24, 31-42. |
[22] | Xu, X., Du, Y., Tang, J. and Wang, Y. (2011) Variations of Temperature and Precipitation Extremes in Recent Two Decades over China. Atmospheric Research, 101, 143-154. https://doi.org/10.1016/j.atmosres.2011.02.003 |
[23] | Wheeler, M.C. and Hendon, H.H. (2004) An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Monthly Weather Review, 132, 1917-1932. https://doi.org/10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2 |
[24] | Zimmerman, B.G., Vimont, D.J. and Block, P.J. (2016) Utilizing the State of ENSO as a Means for Season‐ahead Predictor Selection. Water Resources Research, 52, 3761-3774. https://doi.org/10.1002/2015wr017644 |
[25] | Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S. and Schlax, M.G. (2007) Daily High-Resolution-Blended Analyses for Sea Surface Temperature. Journal of Climate, 20, 5473-5496. https://doi.org/10.1175/2007jcli1824.1 |
[26] | van den Dool, H.M., Saha, S. and Johansson, Å. (2000) Empirical Orthogonal Teleconnections. Journal of Climate, 13, 1421-1435. https://doi.org/10.1175/1520-0442(2000)013<1421:eot>2.0.co;2 |
[27] | Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x |
[28] | Saha, S., Moorthi, S., Pan, H., Wu, X., Wang, J., Nadiga, S., et al. (2010) The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91, 1015-1058. https://doi.org/10.1175/2010bams3001.1 |
[29] | Kim, H., Webster, P.J., Curry, J.A. and Toma, V.E. (2012) Asian Summer Monsoon Prediction in ECMWF System 4 and NCEP Cfsv2 Retrospective Seasonal Forecasts. Climate Dynamics, 39, 2975-2991. https://doi.org/10.1007/s00382-012-1470-5 |
[30] | Nowak, K., Webb, R., Cifelli, R. and Brekke, L. (2017) Sub-Seasonal Climate Forecast Rodeo. 2017 AGU Fall Meeting. |
[31] | Liu, J. and Pu, Z. (2019) Does Soil Moisture Have an Influence on Near‐Surface Temperature? Journal of Geophysical Research: Atmospheres, 124, 6444-6466. https://doi.org/10.1029/2018jd029750 |