|
遥感技术在滑坡地质灾害中的应用综述
|
Abstract:
在全球气候变暖和降雨量不断增加的背景下,滑坡的严重威胁人民群众的生命安全。随着遥感技术的发展,其在滑坡方面的使用不断成熟。将遥感技术应用到滑坡前后的变形监测与防治,可快速准确了解灾害发生区域的具体情况,为防灾减灾救灾工作提供技术支持。文章综合概述了不同遥感技术应用在滑坡灾害中的原理与方法,探讨了SAR技术、光学遥感技术、激光雷达技术在滑坡灾害应用中的实例,对三类技术的基本原理、研究现状进行阐述,总结各类技术方法的优缺点,并综合运用多类遥感技术,为预防滑坡灾害提供有益借鉴。
Against the backdrop of global climate change and increasing rainfall, landslides pose a serious threat to the safety of people’s lives. With the development of remote sensing technology, its use in landslides continues to mature. Applying remote sensing technology to deformation monitoring and prevention before and after landslides can quickly and accurately understand the specific situation of the disaster area, providing technical support for disaster prevention, reduction, and relief work. The article provides a comprehensive overview of the principles and methods of different remote sensing technologies applied in landslide disasters, explores examples of SAR technology, optical remote sensing technology, and LiDAR technology in landslide disaster applications, elaborates on the basic principles and research status of the three types of technologies, summarizes the advantages and disadvantages of each technology method, and comprehensively applies multiple types of remote sensing technologies to provide useful references for landslide disaster prevention.
[1] | 潘懋, 李铁峰. 灾害地质学[M]. 北京: 北京大学出版社, 2002. |
[2] | 邵芸, 张茗, 谢酬. 地质灾害遥感综合监测现状与展望[J]. 地质与资源, 2022, 31(3): 381-394. |
[3] | 杨佳旺, 钱建平, 龙思远, 等. 遥感技术在中国地质灾害中的应用[J]. 防灾减灾学报, 2022, 38(4): 17-25. |
[4] | 雷玲, 周荫清, 李景文, 等. PS-InSAR技术在伯克利山滑坡监测中的应用[J]. 北京航空航天大学学报, 2012, 38(9): 1224-1226. |
[5] | 敖萌, 张勤, 赵超英, 等. 改进的CR-InSAR技术用于四川甲居滑坡形变监测[J]. 武汉大学学报(信息科学版), 2017, 42(3): 377-383. |
[6] | 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2039-2049. |
[7] | 邢明泽, 左小清, 张荐铭, 等. 基于SBAS-InSAR技术的西南山区滑坡稳定性监测[J]. 测绘通报, 2024(2): 63-68. |
[8] | 张蕙, 张娅娣, 师芸. 基于InSAR技术的伊宁县滑坡早期识别[J]. 中国矿业, 2024, 33(10): 131-142. |
[9] | 杨佳艺, 杨成生, 魏云杰, 等. 基于时间序列InSAR技术的云南车邑坪滑坡活动监测及影响因素分析[J]. 大地测量与地球动力学, 2025, 45(1): 13-21. |
[10] | 刘晓杰, 赵超英, 李滨, 等. 基于InSAR技术的甘肃积石山震区活动滑坡识别与动态形变监测[J]. 武汉大学学报(信息科学版), 2025, 50(2): 297-312. |
[11] | Maurya, V.K., Meghanadh, D., Dwivedi, R., Martha, T.R. and Roy, P. (2025) A Novel Approach for Most Vulnerable Zone Identification Using MT-InSAR and Machine Learning: A Case Study from Lesser Himalayan Region. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-024-02103-w |
[12] | 郭华东, 李新武, 王长林, 等. 极化干涉雷达遥感机制及作用[J]. 遥感学报, 2002, 6(6): 401-405. |
[13] | 王兴玲, 胡德勇, 唐宏, 等. 基于Bayes决策的机载全极化SAR图像滑坡信息提取[J]. 国土资源遥感, 2014, 26(2): 121-127. |
[14] | 李强, 张景发. 高分三号卫星全极化SAR影像九寨沟地震滑坡普查[J]. 遥感学报, 2019, 23(5): 883-891. |
[15] | 胡灿程, 汪长城, 沈鹏. 一种引入极化似然比检验的极化SAR滑坡形变监测方法[J]. 武汉大学学报(信息科学版), 2023, 48(12): 1943-1950. |
[16] | Hu, J., Yu, Y., Gui, R., Zheng, W. and Guo, A. (2023) Spatial Distribution Analysis of Landslide Deformations and Land-Use Changes in the Three Gorges Reservoir Area by Using Interferometric and Polarimetric Sar. Remote Sensing, 15, Article 2302. https://doi.org/10.3390/rs15092302 |
[17] | Ohki, M., Abe, T., Tadono, T. and Shimada, M. (2020) Landslide Detection in Mountainous Forest Areas Using Polarimetry and Interferometric Coherence. Earth, Planets and Space, 72, Article No. 67. https://doi.org/10.1186/s40623-020-01191-5 |
[18] | 于海明, 张熠斌, 方向辉, 等. 综合InSAR技术和多源SAR数据在滑坡变形监测中的应用——以吉林治新村滑坡为例[J]. 中国地质灾害与防治学报, 2024, 35(1): 155-162. |
[19] | 左小清, 张荐铭, 李勇发, 等. 典型山区InSAR地表形变监测与滑坡灾害识别[J]. 昆明理工大学学报(自然科学版), 2024, 49(4): 89-104. |
[20] | Schmitt, M. and Zhu, X.X. (2016) Data Fusion and Remote Sensing: An Ever-Growing Relationship. IEEE Geoscience and Remote Sensing Magazine, 4, 6-23. https://doi.org/10.1109/mgrs.2016.2561021 |
[21] | Bai, Y., Sun, G., Li, Y., Ma, P., Li, G. and Zhang, Y. (2021) Comprehensively Analyzing Optical and Polarimetric SAR Features for Land-Use/Land-Cover Classification and Urban Vegetation Extraction in Highly-Dense Urban Area. International Journal of Applied Earth Observation and Geoinformation, 103, Article ID: 102496. https://doi.org/10.1016/j.jag.2021.102496 |
[22] | 刘敏时, 刘英, 赵峰. 智能光学遥感微纳卫星系统设计方法[M]. 北京: 人民邮电出版社: 2021: 165. |
[23] | 陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版), 2019, 44(9): 1342-1354. |
[24] | 涂宽, 王文龙, 谌华, 等. 联合升降轨InSAR与高分辨率光学遥感的滑坡隐患早期识别——以宁夏隆德为例[J]. 中国地质灾害与防治学报, 2021, 32(6): 72-81. |
[25] | Kuang, J., Ng, A.H., Ge, L., Metternicht, G.I. and Clark, S.R. (2023) Joint Use of Optical and Radar Remote Sensing Data for Characterizing the 2020 Aniangzhai Landslide Post-Failure Displacement. Remote Sensing, 15, Article 369. https://doi.org/10.3390/rs15020369 |
[26] | 谭晴, 吴希文, 王华, 等. 基于光学遥感自适应偏移追踪技术的滑坡监测[J]. 广东工业大学学报, 2025, 42(1): 107-113. |
[27] | Peters, S., Liu, J., Keppel, G., Wendleder, A. and Xu, P. (2024) Detecting Coseismic Landslides in GEE Using Machine Learning Algorithms on Combined Optical and Radar Imagery. Remote Sensing, 16, Article 1722. https://doi.org/10.3390/rs16101722 |
[28] | 曾帅, 马志刚, 赵聪, 等. 青藏高原东部大渡河流域太平桥乡古滑坡群复活特征多源遥感识别[J]. 现代地质, 2023, 37(4): 994-1003. |
[29] | Lucieer, A., Jong, S.M.d. and Turner, D. (2013) Mapping Landslide Displacements Using Structure from Motion (SFM) and Image Correlation of Multi-Temporal UAV Photography. Progress in Physical Geography: Earth and Environment, 38, 97-116. https://doi.org/10.1177/0309133313515293 |
[30] | Hölbling, D., Betts, H., Spiekermann, R. and Phillips, C. (2016) Identifying Spatio-Temporal Landslide Hotspots on North Island, New Zealand, by Analyzing Historical and Recent Aerial Photography. Geosciences, 6, Article 48. https://doi.org/10.3390/geosciences6040048 |
[31] | 许强, 郭晨, 董秀军. 地质灾害航空遥感技术应用现状及展望[J]. 测绘学报, 2022, 51(10): 2020-2033. |
[32] | Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D. and Dorsch, S.J. (2006) Analysis of Lidar-Derived Topographic Information for Characterizing and Differentiating Landslide Morphology and Activity. Geomorphology, 73, 131-148. https://doi.org/10.1016/j.geomorph.2005.07.006 |
[33] | Schulz, W.H. (2007) Landslide Susceptibility Revealed by LIDAR Imagery and Historical Records, Seattle, Washington. Engineering Geology, 89, 67-87. https://doi.org/10.1016/j.enggeo.2006.09.019 |
[34] | 沈永林, 李晓静, 吴立新. 基于航空影像和LiDAR数据的海地地震滑坡识别研究[J]. 地理与地理信息科学, 2011, 27(1): 16-20, 115. |
[35] | 李彩虹, 郭长宝, 张广泽, 等. 基于激光雷达(LiDAR)的地形与钻探滑面重构滑坡体积计算方法——以四川省巴塘县德达古滑坡为例[J]. 地质通报, 2021, 40(12): 2015-2023. |
[36] | 贺鹏, 颜瑜严, 文艳, 等. 机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用[J]. 自然资源遥感, 2022, 34(4): 307-316. |
[37] | 邓博, 张会, 柏君, 等. 利用机载LiDAR的深圳市斜坡类地质灾害危险性评价[J]. 武汉大学学报(信息科学版), 2024, 49(8): 1377-1391. |
[38] | 贾永红, 李德仁, 孙家柄. 多源遥感影像数据融合[J]. 遥感技术与应用, 2000, 15(1): 41-44. |
[39] | 彭志忠, 袁飞云, 肖锋, 等. 多源遥感数据融合调查的复杂山区滑坡易发性评价方法研究[J]. 地质灾害与环境保护, 2023, 34(1): 1-7. |
[40] | Wang, J., Lei, T., Liu, W., Chen, Y., Yue, J. and Liu, B. (2022) Prediction Analysis of Landslide Displacement Trajectory Based on the Gradient Descent Method with Multisource Remote Sensing Observations. Geomatics, Natural Hazards and Risk, 14, 143-175. https://doi.org/10.1080/19475705.2022.2158375 |
[41] | 王猛, 何德伟, 贾志宏, 等. 基于多源遥感数据的高位滑坡特征分析——以广元市利州区荣山镇岩窝村滑坡为例[J]. 中国地质灾害与防治学报, 2023, 34(6): 57-68. |
[42] | 卫石印, 李忠涵, 张启慧, 等. 基于多源遥感数据的滑坡易发区域识别——以山东省沂源县为例[J]. 山东国土资源, 2024, 40(10): 60-65. |
[43] | 张利军, 贺思睿, 张建东, 等. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187. |