|
赣南关西岩体成因:锆石U-Pb年龄和Sr-Nd同位素约束
|
Abstract:
关西岩体位于华南板块,为讨论关西岩体的岩石成因,文章进行了LA-ICP-MS锆石U-Pb定年、岩石地化及Sr-Nd同位素研究。LA-ICP-MS锆石U-Pb同位素年龄测定结果表明赣南关西岩体的年龄为199.3 ± 2.6 Ma (MSWD = 1.5, n = 9)。关西花岗岩高硅、富碱,贫铁、镁、钙,富集Nb、Ta、Zr、Hf等高场强元素,具有显著的Eu负异常并强烈亏损Ba、Sr、P、Ti等元素;具有较高的全岩锆饱和温度(TZr = 811℃~1074℃,平均值为966℃),10,000 × Ga/Al > 2.6,表明关西岩体为A型花岗岩。关西花岗岩Sr-Nd同位素分析显示具有较低(87Sr/86Sr)i值(0.703518~0.677420)和较高的εNd(t)值(0.33~1.09),强烈的Eu负异常和高Rb/Sr比值,结合全岩主微量元素特征,它的源区可能为亏损地幔演化形成的新生地壳。
The Guanxi Pluton is situated within the South China Block. To discuss the petrogenesis of the Guanxi Pluton, this study conducted LA-ICP-MS zircon U-Pb dating, petrogeochemical analysis, and Sr-Nd isotopic investigations. LA-ICP-MS zircon U-Pb isotopic age determination results indicate that the age of the Guanxi Pluton in southern Jiangxi is 199.3 ± 2.6 Ma (MSWD = 1.5, n = 9). The Guanxi granite is characterized by high silica and alkali content, low iron, magnesium, and calcium, enrichment in high-field-strength elements such as Nb, Ta, Zr, and Hf, significant Eu negative anomalies, and strong depletion in elements like Ba, Sr, P, and Ti. It exhibits high whole-rock zircon saturation temperatures (TZr = 811?C ~1074?C, average of 966?C) and 10,000 × Ga/Al ratios greater than 2.6, indicating that the Guanxi Pluton is an A-type granite. Sr-Nd isotopic analysis of the Guanxi granite reveals low initial (87Sr/86Sr)i values (0.703518~0.677420) and high εNd(t) values (0.33~1.09), along with strong Eu negative anomalies and high Rb/Sr ratios. Combined with the whole-rock major and trace element characteristics, its source region is likely juvenile crust formed through the evolution of depleted mantle.
[1] | 谢玉玲, 夏加明, 崔凯, 曲云伟, 梁培, 钟日晨. 中国碳酸岩型稀土矿床: 时空分布与成矿过程[J]. 科学通报, 2022, 65(33): 3794-808. |
[2] | 杨玉元, 李宁波, 姜玉航, 赵旭. 离子吸附型轻稀土和重稀土矿床成矿母岩地球化学特征对比研究: 以关西和大埠花岗岩体为例[J]. 大地构造与成矿学, 2024, 48(2): 232-247. |
[3] | He, C., Xu, C., Zhao, Z., Kynicky, J., Song, W. and Wang, L. (2017) Petrogenesis and Mineralization of Ree-Rich Granites in Qingxi and Guanxi, Nanling Region, South China. Ore Geology Reviews, 81, 309-325. https://doi.org/10.1016/j.oregeorev.2016.10.021 |
[4] | 赣南地质调查大队. 足洞花岗岩风化壳离子吸附型重稀土矿[J]. 江西省地质矿产局赣南地质调查大队, 1987. |
[5] | 黄典豪. 江西足洞和关西花岗岩体的铀-铅,铷-锶体系同位素特征及其地质意义[J]. 岩石学报, 1989, 5(1): 37-48. |
[6] | 黄典豪, 吴澄宇, 韩久竹. 江西足洞和关西花岗岩的稀土元素地球化学及矿化特征[J]. 地质学报, 1988(4): 311-28. |
[7] | 黄典豪, 吴澄宇, 韩久竹. 江西足洞和关西花岗岩的岩石学、稀土元素地球化学及成岩机制[J]. 中国地质科学院院报, 1993, 14(2): 69-94. |
[8] | 吴澄宇. 赣南粤北地区风化壳离子吸附型稀土矿床研究[D]: [博士学位论文]. 北京: 中国地质科学院, 1988. |
[9] | 吴澄宇, 白鸽, 黄典豪, 朱正书. 南岭富重稀土花岗岩类的特征和意义[J]. 中国地质科学院院报, 1992, 13(1): 17. |
[10] | 赵芝, 王登红, 陈振宇, 陈郑辉, 郑国栋, 刘新星. 江西龙南稀土花岗岩的锆石U-Pb年龄、内生矿化特征及成因讨论[J]. 地球学报, 2014, 35(6): 719-25. |
[11] | 徐志刚. 中国成矿区带划分方案[M]. 北京: 地质出版社, 2008. |
[12] | 舒良树. 华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J]. 高校地质学报, 2006, 12(4): 418-431 |
[13] | 李建康, 王登红, 粱婷, 等. 南岭区域成矿与深部探测的研究进展及其对西藏钨锡找矿的指示[J]. 地球学报, 2013, 34(1): 58-74. |
[14] | Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K. and Wang, D. (2009) Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51, 537-571. https://doi.org/10.1093/petrology/egp082 |
[15] | Söderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E. (2004) The 176lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219, 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 |
[16] | Bouvier, A., Vervoort, J.D. and Patchett, P.J. (2008) The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273, 48-57. https://doi.org/10.1016/j.epsl.2008.06.010 |
[17] | Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., et al. (2000) The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64, 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 |
[18] | Zhou, X., Sun, T., Shen, W., Shu, L. and Niu, Y. (2006) Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29, 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 |
[19] | 贾小辉, 李响, 杨文强. 华南早侏罗世花岗质侵入体的岩石成因及构造背景——兼论其关键金属成矿作用[J]. 华南地质, 2023, 39(2): 186-202. |
[20] | 谢昕, 徐夕生, 邹海波, 蒋少涌, 张明, 邱检生. 中国东南部晚中生代大规模岩浆作用序幕: J2早期玄武岩[J]. 中国科学(D辑), 2005, 35(7): 587-605. |
[21] | 刘潜, 于津海, 苏斌, 王勤, 唐红峰, 许海, 崔翔. 福建锦城187Ma花岗岩的发现——对华南沿海早侏罗世构造演化的制约[J]. 岩石学报, 2011, 27(12): 3575-3589. |
[22] | Jiang, Y., Wang, G., Liu, Z., Ni, C., Qing, L. and Zhang, Q. (2015) Repeated Slab Advance-Retreat of the Palaeo-Pacific Plate Underneath SE China. International Geology Review, 57, 472-491. https://doi.org/10.1080/00206814.2015.1017775 |
[23] | 陈培荣, 华仁民, 章邦桐, 陆建军, 范春方. 南岭燕山早期后造山花岗岩类: 岩石学制约和地球动力学背景[J]. 中国科学(D辑: 地球科学), 2002, 32(4): 279-289. |
[24] | Collins, W.J., Beams, S.D., White, A.J.R. and Chappell, B.W. (1982) Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80, 189-200. https://doi.org/10.1007/bf00374895 |
[25] | Whalen, J.B., Currie, K.L. and Chappell, B.W. (1987) A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95, 407-419. https://doi.org/10.1007/bf00402202 |
[26] | Nardi, L.V.S. and de Fatima Bitencourt, M. (2009) A-Type Granitic Rocks in Post-Collisional Settings in Southernmost Brazil: Their Classification and Relationship with Tectonics and Magmatic Series. The Canadian Mineralogist, 47, 1493-1503. https://doi.org/10.3749/canmin.47.6.1493 |
[27] | Eby, G.N. (1990) The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26, 115-134. https://doi.org/10.1016/0024-4937(90)90043-z |
[28] | Eby, G.N. (1992) Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20, 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 |
[29] | Turner, S.P., Foden, J.D. and Morrison, R.S. (1992) Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28, 151-179. https://doi.org/10.1016/0024-4937(92)90029-x |
[30] | Yang, J., Wu, F., Chung, S., Wilde, S.A. and Chu, M. (2006) A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89, 89-106. https://doi.org/10.1016/j.lithos.2005.10.002 |
[31] | Huang, H.Q., Li, X.H., Li, W.X. and Li, Z.X. (2011) Formation of High 18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39, 903-906. https://doi.org/10.1130/g32080.1 |
[32] | Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X., et al. (2002) Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61, 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 |