|
锑矿床成因研究进展
|
Abstract:
金属锑是一种十分重要的战略资源,素来就有“工业味精”之称,学者们根据各自提出的划分标准对于锑矿的类型进行了多种划分,锑矿资源在全球分布广泛,主要产出于环太平洋成矿域、特提斯成矿域和中亚–天山成矿域,我国锑矿床分布可划分为华南锑矿成矿带、昆仑–秦岭锑成矿带、阴山–天山锑成矿带及藏滇锑成矿带,其中以华南锑矿成矿带的锑储量最大。产出于不同地质背景的锑矿床,往往具有不同的成矿流体性质和来源,来源主要有大气水、岩浆水、变质水、盆地水等。在成矿热液系统中,锑矿中的矿物可以通过多种机制从热液中沉淀出来,主要为流体混合和相分离、温度和/或压力等物理化学条件的变化、水/岩石相互作用。
Antimony metal is a very important strategic resource, has always been known as “industrial monosodium glutamate”, scholars according to their own classification standards for the type of antimony ore for a variety of division, antimony resources are widely distributed in the world, mainly produced in the Pacific Rim mineralization area, Tethys mineralization area and Central Asia-Tianshan mineralization area, China’s antimony deposit distribution can be divided into South China antimony ore metallogenic belt, Kunlun-Qinling antimony metallogenic belt, Yinshan-Tianshan antimony mineralization belt and Tibetan Yunnan antimony mineralization belt, of which the South China antimony ore metallogenic belt has the largest antimony reserves. Antimony deposits produced in different geological backgrounds often have different metallogenic fluid properties and sources, mainly atmospheric water, magmatic water, metamorphic water, basin water, etc. In mineralizing hydrothermal systems, minerals in antimony ore can be precipitated from hydrothermal fluids through a variety of mechanisms, mainly fluid mixing and phase separation, changes in physicochemical conditions such as temperature and/or pressure, and water/rock interactions.
[1] | Boyle, R.W. and Jonasson, I.R. (1984) The Geochemistry of Antimony and Its Use as an Indicator Element in Geochemical Prospecting. Journal of Geochemical Exploration, 20, 223-302. https://doi.org/10.1016/0375-6742(84)90071-2 |
[2] | 张天羽, 李聪颖, 孙赛军, 等. 锑的地球化学性质与华南锑矿带成因初探[J]. 岩石学报, 2020, 36(1): 44-54. |
[3] | Williams-Jones, A.E. and Norman, C. (1997) Controls of Mineral Parageneses in the System Fe-Sb-S-O. Economic Geology, 92, 308-324. https://doi.org/10.2113/gsecongeo.92.3.308 |
[4] | Long, Z.Y., Qiu, K.F., Santosh, M., et al. (2022) Fingerprinting the Metal Source and Cycling of the World’s Largest Antimony Deposit in Xikuangshan, China. GSA Bulletin, 135, 286-294. |
[5] | 董延涛, 袁博, 牛颖超. 我国锑矿资源产业高质量发展研究[J]. 现代矿业, 2020, 36(10): 19-21. |
[6] | Ding, J., Zhang, Y., Ma, Y., Wang, Y., Zhang, J. and Zhang, T. (2021) Metallogenic Characteristics and Resource Potential of Antimony in China. Journal of Geochemical Exploration, 230, Article ID: 106834. https://doi.org/10.1016/j.gexplo.2021.106834 |
[7] | Tzamos, E., Grieco, G., Bussolesi, M., et al. (2019) Mineralogical and Geochemical Investigation of Sb-Bearing Minerals from Greek Ores. 15th International Congress of the Geological Society of Greece, Athens, 22-24 May 2019, 1-3. |
[8] | 李中平. 中国锑行业发展现状及高质量发展建议[J]. 中国国土资源经济, 2021, 34(3): 17-20, 68. |
[9] | USGS (2022) Mineral Commodity Summaries 2022. |
[10] | 王永磊, 徐珏, 张长青, 等. 中国锑矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2208-2215. |
[11] | 余金杰, 闫升好. 锑矿床研究若干问题初探[J]. 矿床地质, 2000, 19(2): 166-172. |
[12] | 张国林, 姚金炎, 谷相平. 中国锑矿床类型及时空分布规律[J]. 矿产与地质, 1998, 12(5): 19-25. |
[13] | 易建斌. 全球锑矿床成矿学基本特征及超大型锑矿床成矿背景初探[J]. 大地构造与成矿学, 1994(3): 199-208. |
[14] | 丁建华, 杨毅恒, 邓凡. 中国锑矿资源潜力及成矿预测[J]. 中国地质, 2013, 40(3): 846-858. |
[15] | 肖启明, 曾笃仁, 金富秋, 等. 中国锑矿床时空分布规律及找矿方向[J]. 地质与勘探, 1992(12): 9-14. |
[16] | Jiada, W. (1993) Antimony Vein Deposits of China. Ore Geology Reviews, 8, 213-232. https://doi.org/10.1016/0169-1368(93)90017-s |
[17] | 唐宇蔷, 孔华, 吴堑虹, 等. 板溪锑矿床流体包裹体研究[J]. 地质找矿论丛, 2017, 32(3): 391-396. |
[18] | Li, H., Wu, Q., Evans, N.J., Zhou, Z., Kong, H., Xi, X., et al. (2018) Geochemistry and Geochronology of the Banxi Sb Deposit: Implications for Fluid Origin and the Evolution of Sb Mineralization in Central-Western Hunan, South China. Gondwana Research, 55, 112-134. https://doi.org/10.1016/j.gr.2017.11.010 |
[19] | Fu, S., Wang, T., Yan, J., Pan, L., Wei, L., Lan, Q., et al. (2022) Formation of the Banxi Sb Deposit in Eastern Yangtze Block: Evidence from Individual Fluid Inclusion Analyses, Trace Element Chemistry, and He-Ar-S Isotopes. Ore Geology Reviews, 146, Article ID: 104949. https://doi.org/10.1016/j.oregeorev.2022.104949 |
[20] | Deng, C., Zhang, J., Hu, R., Luo, K., Zhu, Y. and Yin, R. (2021) Mercury Isotope Constraints on the Genesis of Late Mesozoic Sb Deposits in South China. Science China Earth Sciences, 65, 269-281. https://doi.org/10.1007/s11430-021-9851-x |
[21] | 林芳梅. 湘中锡矿山锑矿床成矿流体研究[D]: [硕士学位论文]. 长沙: 中南大学, 2014. |
[22] | 金景福. 超大型锑矿床定位机制剖析——以锡矿山锑矿床为例[J]. 矿物岩石地球化学通报, 2002, 21(3): 145-151. |
[23] | A’xiang, H. and Jiantang, P. (2018) Fluid Inclusions and Ore Precipitation Mechanism in the Giant Xikuangshan Mesothermal Antimony Deposit, South China: Conventional and Infrared Microthermometric Constraints. Ore Geology Reviews, 95, 49-64. https://doi.org/10.1016/j.oregeorev.2018.02.005 |
[24] | Fu, S., Hu, R., Yin, R., Yan, J., Mi, X., Song, Z., et al. (2019) Mercury and in Situ Sulfur Isotopes as Constraints on the Metal and Sulfur Sources for the World’s Largest Sb Deposit at Xikuangshan, Southern China. Mineralium Deposita, 55, 1353-1364. https://doi.org/10.1007/s00126-019-00940-1 |
[25] | Fu, S., Lan, Q. and Yan, J. (2020) Trace Element Chemistry of Hydrothermal Quartz and Its Genetic Significance: A Case Study from the Xikuangshan and Woxi Giant Sb Deposits in Southern China. Ore Geology Reviews, 126, Article ID: 103732. https://doi.org/10.1016/j.oregeorev.2020.103732 |
[26] | Zhai, D., Mathur, R., Liu, S., Liu, J., Godfrey, L., Wang, K., et al. (2021) Antimony Isotope Fractionation in Hydrothermal Systems. Geochimica et Cosmochimica Acta, 306, 84-97. https://doi.org/10.1016/j.gca.2021.05.031 |
[27] | 李俊, 宋焕斌. 贵州半坡锑矿床成矿流体地球化学[J]. 昆明理工大学学报, 1999(1): 79-85. |
[28] | 肖宪国. 贵州半坡锑矿床年代学、地球化学及成因[D]: [博士学位论文]. 昆明: 昆明理工大学, 2014. |
[29] | Nesbitt, B.E., Muehlenbachs, K. and Murowchick, J.B. (1989) Genetic Implications of Stable Isotope Characteristics of Mesothermal Au Deposits and Related Sb and Hg Deposits in the Canadian Cordillera. Economic Geology, 84, 1489-1506. https://doi.org/10.2113/gsecongeo.84.6.1489 |
[30] | Dill, H.G., Weiser, T., Bernhardt, I.R. and Kilibarda, C.R. (1995) The Composite Gold-Antimony Vein Deposit at Kharma (Bolivia). Economic Geology, 90, 51-66. https://doi.org/10.2113/gsecongeo.90.1.51 |
[31] | Dill, H.G., Pertold, Z. and Riera Kilibarda, C. (1997) Sediment-hosted and Volcanic-Hosted Sb Vein Mineralization in the Potosi Region, Central Bolivia. Economic Geology, 92, 623-632. https://doi.org/10.2113/gsecongeo.92.5.623 |
[32] | Dill, H.G. (1998) Evolution of Sb Mineralisation in Modern Fold Belts: A Comparison of the Sb Mineralisation in the Central Andes (Bolivia) and the Western Carpathians (Slovakia). Mineralium Deposita, 33, 359-378. https://doi.org/10.1007/s001260050155 |
[33] | Chen, J., Yang, R., Du, L., Zheng, L., Gao, J., Lai, C., et al. (2018) Mineralogy, Geochemistry and Fluid Inclusions of the Qinglong Sb-(Au) Deposit, Youjiang Basin (Guizhou, SW China). Ore Geology Reviews, 92, 1-18. https://doi.org/10.1016/j.oregeorev.2017.11.009 |
[34] | 熊灿娟, 刘建中, 刘帅, 等. 晴隆大厂锑矿流体包裹体研究[J]. 贵州大学学报(自然科学版), 2013, 30(6): 47-52. |
[35] | 陈娴, 苏文超, 黄勇. 贵州晴隆锑矿床成矿流体He-Ar同位素地球化学[J]. 岩石学报, 2016, 32(11): 3312-3320. |
[36] | Chen, J., Huang, Z., Yang, R., Du, L. and Liao, M. (2021) Gold and Antimony Metallogenic Relations and Ore-Forming Process of Qinglong Sb(Au) Deposit in Youjiang Basin, SW China: Sulfide Trace Elements and Sulfur Isotopes. Geoscience Frontiers, 12, 605-623. https://doi.org/10.1016/j.gsf.2020.08.010 |
[37] | 常江, 李益智, 赵京, 等. 广西五圩矿田箭猪坡铅锌矿床流体包裹体特征及其地质意义[J]. 矿产与地质, 2016, 30(2): 270-277. |
[38] | Zhang, J., Huang, W., Liang, H., Wu, J. and Chen, X. (2018) Genesis of the Jianzhupo Sb-Pb-Zn-Ag Deposit and Formation of an Ore Shoot in the Wuxu Ore Field, Guangxi, South China. Ore Geology Reviews, 102, 654-665. https://doi.org/10.1016/j.oregeorev.2018.09.026 |
[39] | Pavlova, G.G. and Borovikov, A.A. (2010) Silver-Antimony Deposits of Central Asia: Physico-Chemical Model of Formation and Sources of Mineralisation. Australian Journal of Earth Sciences, 57, 755-775. https://doi.org/10.1080/08120091003736540 |
[40] | Wilkinson, J.J. (2001) Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55, 229-272. https://doi.org/10.1016/s0024-4937(00)00047-5 |
[41] | Pokrovski, G.S., Borisova, A.Y., Roux, J., Hazemann, J., Petdang, A., Tella, M., et al. (2006) Antimony Speciation in Saline Hydrothermal Fluids: A Combined X-Ray Absorption Fine Structure Spectroscopy and Solubility Study. Geochimica et Cosmochimica Acta, 70, 4196-4214. https://doi.org/10.1016/j.gca.2006.06.1549 |
[42] | Krupp, R.E. (1988) Solubility of Stibnite in Hydrogen Sulfide Solutions, Speciation, and Equilibrium Constants, from 25 to 350˚C. Geochimica et Cosmochimica Acta, 52, 3005-3015. https://doi.org/10.1016/0016-7037(88)90164-0 |
[43] | Munoz, M., Courjault‐Radé, P. and Tollon, F. (1992) The Massive Stibnite Veins of the French Palaeozoic Basement: A Metallogenic Marker of Late Variscan Brittle Extension. Terra Nova, 4, 171-177. https://doi.org/10.1111/j.1365-3121.1992.tb00468.x |
[44] | Hagemann, S.G. and Lüders, V. (2003) P-T-X Conditions of Hydrothermal Fluids and Precipitation Mechanism of Stibnite-Gold Mineralization at the Wiluna Lode-Gold Deposits, Western Australia: Conventional and Infrared Microthermometric Constraints. Mineralium Deposita, 38, 936-952. https://doi.org/10.1007/s00126-003-0351-6 |
[45] | Spycher, N.F. and Reed, M.H. (1989) As (III) and Sb(III) Sulfide Complexes: An Evaluation of Stoichiometry and Stability from Existing Experimental Data. Geochimica et Cosmochimica Acta, 53, 2185-2194. https://doi.org/10.1016/0016-7037(89)90342-6 |
[46] | Wood, S.A., Crerar, D.A. and Borcsik, M.P. (1987) Solubility of the Assemblage Pyrite-Pyrrhotite-Magnetite-Sphalerite-Galena-Gold-Stibnite-Bismuthinite-Argen-Tite-Molybdenite in H2O-NaCl-CO2 Solutions from 200 Degrees to 350 Degrees C Degrees. Economic Geology, 82, 1864-1887. https://doi.org/10.2113/gsecongeo.82.7.1864 |
[47] | Zotov, A.V., Shikina, N.D. and Akinfiev, N.N. (2003) Thermodynamic Properties of the Sb(III) Hydroxide Complex Sb(OH)3(aq) at Hydrothermal Conditions. Geochimica et Cosmochimica Acta, 67, 1821-1836. https://doi.org/10.1016/s0016-7037(02)01281-4 |
[48] | 朱赖民, 胡瑞忠. 黔西南微细浸染型金矿床中金和锑共生分异现象及其热力学分析[J]. 中国科学(D辑: 地球科学), 1999(6): 481-488. |
[49] | Obolensky, A.A., Gushchina, L.V., Borisenko, A.S., Borovikov, A.A. and Pavlova, G.G. (2007) Antimony in Hydrothermal Processes: Solubility, Conditions of Transfer, and Metal-Bearing Capacity of Solutions. Russian Geology and Geophysics, 48, 992-1001. https://doi.org/10.1016/j.rgg.2007.11.006 |
[50] | 苏文超, 朱路艳, 格西, 等. 贵州晴隆大厂锑矿床辉锑矿中流体包裹体的红外显微测温学研究[J]. 岩石学报, 2015, 31(4): 918-924. |
[51] | 孙晓明, 莫儒伟, 翟伟, 等. 藏南沙拉岗锑矿流体包裹体红外显微测温研究[J]. 岩石学报, 2014, 30(1): 189-198. |
[52] | 余盼, 郑义, 王岳军, 等. 湖南新宁星子岩锑矿流体包裹体特征及矿床成因[J]. 地学前缘, 2018, 25(5): 266-276. |
[53] | Wang, Z., Xia, Y., Song, X., Liu, J., Yang, C. and Yan, B. (2012) Study on the Evolution of Ore-Formation Fluids for Au-Sb Ore Deposits and the Mechanism of Au-Sb Paragenesis and Differentiation in the Southwestern Part of Guizhou Province, China. Chinese Journal of Geochemistry, 32, 56-68. https://doi.org/10.1007/s11631-013-0607-5 |
[54] | Zhu, Y. and Peng, J. (2015) Infrared Microthermometric and Noble Gas Isotope Study of Fluid Inclusions in Ore Minerals at the Woxi Orogenic Au-Sb-W Deposit, Western Hunan, South China. Ore Geology Reviews, 65, 55-69. https://doi.org/10.1016/j.oregeorev.2014.08.014 |
[55] | 金景福, 陶琰, 曾令交. 锡矿山式锑矿床的成矿流体研究[J]. 矿物岩石地球化学通报, 2001(3): 156-164. |