全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海底热液区硫化物烟囱体的矿物学与地球化学特征:海洋资源领域的研究进展与展望
Mineralogical and Geochemical Characteristics of Sulfide Chimneys in Hydrothermal Vent Fields: Research Progress and Prospects in the Field of Marine Resources

DOI: 10.12677/ag.2025.154036, PP. 354-359

Keywords: 海底热液区,硫化物烟囱体,地球化学,海洋资源
Submarine Hydrothermal Vent Fields
, Sulfide Chimneys, Geochemistry, Marine Resources

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章综述了海底热液区硫化物烟囱体的矿物学与地球化学特征研究进展。通过对硫化物烟囱体的形成机制、矿物组成、地球化学特征及其资源潜力的分析,探讨了当前研究现状和未来发展方向。研究表明,硫化物烟囱体富含多种金属元素,具有重要的资源开发价值。然而,深海开采技术、环境影响评估和资源可持续利用等方面仍面临挑战。未来研究应重点关注烟囱体形成演化机制、精细矿物学特征、元素迁移规律以及资源开发与环境保护的平衡,为深海资源的可持续利用提供科学依据。
This article provides a comprehensive review of the progress of research on the mineralogical and geochemical characteristics of sulfide chimneys in submarine hydrothermal vent fields. By analyzing the formation mechanisms, mineral composition, geochemical features, and resource potential of sulfide chimneys, the current research status and future development directions are explored. Studies have shown that sulfide chimneys are rich in various metallic elements, holding significant resource development value. However, challenges remain in deep-sea mining technology, environmental impact assessment, and sustainable resource utilization. Future research should focus on the formation and evolution mechanisms of chimneys, detailed mineralogical characteristics, elemental migration patterns, and the balance between resource development and environmental protection, thereby providing a scientific basis for the sustainable utilization of deep-sea resources.

References

[1]  Rona, P.A. (1984) Hydrothermal Mineralization at Seafloor Spreading Centers. Earth-Science Reviews, 20, 1-104.
https://doi.org/10.1016/0012-8252(84)90080-1
[2]  Rona, P.A. and Scott, S.D. (1993) A Special Issue on Sea-Floor Hydrothermal Mineralization; New Perspectives; Preface. Economic Geology, 88, 1935-1976.
https://doi.org/10.2113/gsecongeo.88.8.1935
[3]  李家彪, 王叶剑, 李小虎. 现代海底热液硫化物成矿地质学[M]. 北京: 科学出版社, 2017.
[4]  Beaulieu, S.E. and Szafranski, K.M. (2020) InterRidge Global Database of Active Submarine Hydrothermal Vent Fields Version 3.4. Institute de Plysique du Globe de Paris.
[5]  陶春辉, 陈建平, 廖时理, 等. 洋中脊多金属硫化物成矿预测与资源量估算方法[M]. 北京: 科学出版社, 2019.
[6]  陶春辉, 梁锦, 王汉闯, 等. 洋中脊多金属硫化物勘查方法和技术[M]. 北京: 科学出版社, 2018.
[7]  Liu, L., Lu, J., Tao, C., Liao, S. and Chen, S. (2021) GIS-Based Mineral Prospectivity Mapping of Seafloor Massive Sulfide on Ultraslow-Spreading Ridges: A Case Study of Southwest Indian Ridge 48.7˚–50.5˚E. Natural Resources Research, 30, 971-987.
https://doi.org/10.1007/s11053-020-09797-y
[8]  Li, J., Jian, H., Chen, Y.J., Singh, S.C., Ruan, A., Qiu, X., et al. (2015) Seismic Observation of an Extremely Magmatic Accretion at the Ultraslow Spreading Southwest Indian Ridge. Geophysical Research Letters, 42, 2656-2663.
https://doi.org/10.1002/2014gl062521
[9]  Zhao, M., Qiu, X., Li, J., Sauter, D., Ruan, A., Chen, J., et al. (2013) Three‐Dimensional Seismic Structure of the Dragon Flag Oceanic Core Complex at the Ultraslow Spreading Southwest Indian Ridge (49˚39′e). Geochemistry, Geophysics, Geosystems, 14, 4544-4563.
https://doi.org/10.1002/ggge.20264
[10]  Tao, C., Seyfried, W.E., Lowell, R.P., Liu, Y., Liang, J., Guo, Z., et al. (2020) Deep High-Temperature Hydrothermal Circulation in a Detachment Faulting System on the Ultra-Slow Spreading Ridge. Nature Communications, 11, Article No. 1300.
https://doi.org/10.1038/s41467-020-15062-w
[11]  Tao, C., Lin, J., Guo, S., Chen, Y.J., Wu, G., Han, X., et al. (2012) First Active Hydrothermal Vents on an Ultraslow-Spreading Center: Southwest Indian Ridge. Geology, 40, 47-50.
https://doi.org/10.1130/g32389.1
[12]  吴涛. 西南印度洋脊热液硫化物区近底磁法研究[D]: [博士学位论文]. 长春: 吉林大学, 2017.
[13]  Zhu, Z., Tao, C., Shen, J., Revil, A., Deng, X., Liao, S., et al. (2020) Self‐Potential Tomography of a Deep‐Sea Polymetallic Sulfide Deposit on Southwest Indian Ridge. Journal of Geophysical Research: Solid Earth, 125, 1-19.
https://doi.org/10.1029/2020jb019738
[14]  李怀明. 现代海底热液硫化物矿体内部流体过程的模拟实验研究[D]: [博士学位论文]. 青岛: 中国海洋大学, 2008.
[15]  康欢, 江思宏, 韩宁, 等. 德国拉梅尔斯贝格铜-锌-铅-钡矿床研究进展[J]. 地质通报, 2017, 36(8): 1483-1492.
[16]  Allen, D.E. and Seyfried, W.E. (2005) REE Controls in Ultramafic Hosted MOR Hydrothermal Systems: An Experimental Study at Elevated Temperature and Pressure. Geochimica et Cosmochimica Acta, 69, 675-683.
https://doi.org/10.1016/j.gca.2004.07.016
[17]  Douville, E., Bienvenu, P., Charlou, J.L., Donval, J.P., Fouquet, Y., Appriou, P., et al. (1999) Yttrium and Rare Earth Elements in Fluids from Various Deep-Sea Hydrothermal Systems. Geochimica et Cosmochimica Acta, 63, 627-643.
https://doi.org/10.1016/s0016-7037(99)00024-1
[18]  Humphris, S.E. (1998) Rare Earth Element Composition of Anhydrite: Implications for Deposition and Mobility within the Active TAG Hydrothermal Mound. In: Herzig, P.M., Humphris, S.E., Miller, D.J. and Zierenberg, R.A., (Eds.), Proceedings of the Ocean Drilling Program, Ocean Drilling Program, 143-159.
https://doi.org/10.2973/odp.proc.sr.158.213.1998
[19]  陶春辉, 李怀明, 黄威, 等. 西南印度洋脊49˚39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J]. 科学通报, 2011, 56(Z2): 2413-2423.
[20]  Münch, U., Lalou, C., Halbach, P. and Fujimoto, H. (2001) Relict Hydrothermal Events along the Super-Slow Southwest Indian Spreading Ridge near 63°56′e—Mineralogy, Chemistry and Chronology of Sulfide Samples. Chemical Geology, 177, 341-349.
https://doi.org/10.1016/s0009-2541(00)00418-6
[21]  Münch, U., Blum, N. and Halbach, P. (1999) Mineralogical and Geochemical Features of Sulfide Chimneys from the MESO Zone, Central Indian Ridge. Chemical Geology, 155, 29-44.
https://doi.org/10.1016/s0009-2541(98)00139-9
[22]  Marchig, V., Blum, N. and Roonwal, G. (1997) Massive Sulfide Chimneys from the East Pacific Rise at 7˚24′S and 16˚43′S. Marine Georesources & Geotechnology, 15, 49-66.
https://doi.org/10.1080/10641199709379934
[23]  Bogdanov, Y., Gurich, E., Kuptsov, V., et al. (1995) Relict Sulfide Mounds at the TAG Hydrothermal Field of the Mid-Atlantic Ridge (26˚N, 45˚W). Oceanology, 34, 534-542.
[24]  Halbach, P., Pracejus, B. and Maerten, A. (1993) Geology and Mineralogy of Massive Sulfide Ores from the Central Okinawa Trough, Japan. Economic Geology, 88, 2210-2225.
https://doi.org/10.2113/gsecongeo.88.8.2210
[25]  曾志刚, 蒋富清, 秦蕴珊, 等. 冲绳海槽中部Jade热液活动区中块状硫化物的稀土元素地球化学特征[J]. 地质学报, 2001, 75(2): 244-249.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133