|
四川盆地A地区页岩孔隙度预测及主控因素分析
|
Abstract:
孔隙度是深层页岩储层含气性评价及有利区优选的关键参数。为评估LightGBM算法在深层页岩储层孔隙度预测评价中的适用性,选取四川盆地A地区五峰组–龙马溪组深层页岩储层实测孔隙度为标签以及GR等7个测井参数为特征,建立基于LightGBM算法的孔隙度预测评价模型。研究结果表明:LightGBM算法模型的孔隙度评价精度及泛化能力(R2 = 0.979, RMSE = 0.622, MAPE = 31.5%)优于多元回归算法模型,能够精确地评价纵向上孔隙度变化规律;建立的LightGBM算法模型对深层页岩储层中孔隙度评价具有良好的适用性,为深层页岩含气性预测提供了新的思路,并明确研究区孔隙度主要受到TOC及黏土含量的共同控制。
Porosity is a key parameter for evaluating gas bearing properties of deep shale reservoirs and selecting favorable areas. In order to evaluate the applicability of LightGBM algorithm in the prediction and evaluation of deep shale reservoir porosity, the measured porosity of deep shale reservoir in Wufeng Formation and Longmaxi Formation in area A of Sichuan Basin was selected as the label and 7 logging parameters such as GR were featured, and a porosity prediction and evaluation model based on LightGBM algorithm was established. The results show that the porosity evaluation accuracy and generalization ability of LightGBM algorithm model (R2 = 0.979, RMSE = 0.622, MAPE = 31.5%) are superior to the multiple regression algorithm model, and can accurately evaluate the longitudinal porosity variation law. The established LightGBM algorithm model has good applicability to the evaluation of porosity in deep shale reservoirs, providing a new idea for the prediction of gas content in deep shale reservoirs, and it is clear that the porosity of the study area is mainly controlled by TOC and clay content.
[1] | 薛晓辉, 李金龙, 刘红俊, 等. “双碳”背景下我国页岩气产业发展潜力分析[J]. 能源与环保, 2023, 45(9): 169-174. |
[2] | 胡曦, 李亚丁, 但霞, 等. 四川盆地泸州地区五峰组——龙一1亚段页岩气地质特征与富集高产主控因素[J]. 天然气技术与经济, 2024, 18(4): 15-23. |
[3] | 张少龙, 闫建平, 郭伟, 等. 基于岩石物理相的深层页岩气地质——工程甜点参数测井评价方法——以四川盆地LZ区块五峰组——龙马溪组为例[J]. 石油地球物理勘探, 2023, 58(1): 214-227. |
[4] | Meng, Q. (2017) LightGBM: A Highly Efficient Gradient Boosting Decision Tree: Neural Information Processing Systems. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, 4-7 December 2017, 569-577. |
[5] | 尹兴平, 蒋裕强, 付永红, 等. 渝西地区五峰组——龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51. |
[6] | 韩贵生, 雷治安, 徐剑良, 等. 四川盆地深层页岩气储层特征及高产主控因素——以渝西区块五峰组——龙马溪组为例[J]. 天然气勘探与开发, 2020, 43(4): 112-122. |
[7] | 张成林, 张鉴, 李武广, 等. 渝西大足区块五峰组——龙马溪组深层页岩储层特征与勘探前景[J]. 天然气地球科学, 2019, 30(12): 1794-1804. |
[8] | 舒红林, 何方雨, 李季林, 等. 四川盆地大安区块五峰组——龙马溪组深层页岩地质特征与勘探有利区[J]. 天然气工业, 2023, 43(6): 30-43. |
[9] | 邹辰, 吴永辉, 章超, 等. 渝西地区龙马溪组页岩低阻主控因素及有利区预测[J]. 东北石油大学学报, 2023, 47(2): 81-90. |
[10] | Friedman, J.H. (2001) Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29, 1189-1232. https://doi.org/10.1214/aos/1013203451 |
[11] | Chen, T. and Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 785-794. https://doi.org/10.1145/2939672.2939785 |
[12] | 叶玥豪, 陈伟, 汪华, 等. 四川盆地上二叠统大隆组页岩储层特征及其控制因素[J]. 石油与天然气地质, 2024, 45(4): 979-991. |