|
Pure Mathematics 2025
短区间上的Erd?s-Kac定理
|
Abstract:
设
是Euler函数,本文给出了短区间上算术序列的Erds-Kac型定理,其中该算术序列与
分布有关。
Assuming
is an Euler function, this article provides the Erds-Kac type theorem for arithmetic sequences on short intervals, where the arithmetic sequence is related to the Euler function’s distribution.
[1] | Elliott, P.D.T.A. (2014) Central Limit Theorems for Classical Cusp Forms. The Ramanujan Journal, 36, 81-98. https://doi.org/10.1007/s11139-013-9516-9 |
[2] | Liu, K. and Wu, J. (2021) Weighted Erdős-Kac Theorem in Short Intervals. The Ramanujan Journal, 55, 1-12. https://doi.org/10.1007/s11139-020-00343-1 |
[3] | Liu, X.L. and Yang, Z.S. (2020) Weighted Erdős-Kac Type Theorems over Gaussian Field in Short Intervals. Acta Mathematica Hungarica, 162, 465-482. https://doi.org/10.1007/s10474-020-01087-6 |
[4] | Wang, D. (2024) Weighted Erdős-Kac Type Theorems in Short Intervals. Acta Arithmetica, 212, 255-267. https://doi.org/10.4064/aa230129-22-8 |
[5] | Sathe, L.G. (1945) On a Congruence Property of the Divisor Function. American Journal of Mathematics, 67, 397. https://doi.org/10.2307/2371953 |
[6] | Delange, H. (1959) Sur des formules dues à Atle Selberg. Bulletin des Sciences Mathématiques, 2, 101-111. |
[7] | Tenenbaum, G. (2015). Introduction to Analytic and Probabilistic Number Theory. American Mathematical Society, 163. https://doi.org/10.1090/gsm/163 |
[8] | Labihi, O. and Raouj, A. (2020) Estimation de certaines sommes courtes. Journal of Number Theory, 206, 231-249. https://doi.org/10.1016/j.jnt.2019.06.012 |
[9] | Erdös, P. and Kac, M. (1939) On the Gaussian Law of Errors in the Theory of Additive Functions. Proceedings of the National Academy of Sciences, 25, 206-207. https://doi.org/10.1073/pnas.25.4.206 |