全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有上临界指数的p-Choquard方程基态解的存在性
Existence of Ground State Solution for p-Choquard Equation with Upper Critical Exponent

DOI: 10.12677/pm.2025.154115, PP. 114-126

Keywords: p-Choquard方程,上临界指数,基态解,Nehari流形,山路引理
p-Choquard Equation
, Upper Critical Exponent, Ground State Solution, Nehari Manifold, Mountain Pass Lemma

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文讨论下列具有上临界指标的p-Choquard方程 { Δ p u+V( x ) | u | p2 u=[ ( Δ D ) α 2 | u | p α ] | u | p α 2 u,in N ; u W 1,p ( N ), 其中 N3 p α * = p 2 ( N+α Np ) 是关于Hardy-Littlewood-Sobolev不等式的上临界指数,

References

[1]  Pekar, S.I. (2022) Untersuchungen über die Elektronentheorie der Kristalle. De Gruyter.
[2]  Lieb, E.H. (1977) Existence and Uniqueness of the Minimizing Solution of Choquard’s Nonlinear Equation. Studies in Applied Mathematics, 57, 93-105.
https://doi.org/10.1002/sapm197757293
[3]  Penrose, R. (1996) On Gravity’s Role in Quantum State Reduction. General Relativity and Gravitation, 28, 581-600.
https://doi.org/10.1007/bf02105068
[4]  Moroz, I.M., Penrose, R. and Tod, P. (1998) Spherically-Symmetric Solutions of the Schrödinger-Newton Equations. Classical and Quantum Gravity, 15, 2733-2742.
https://doi.org/10.1088/0264-9381/15/9/019
[5]  Moroz, V. and Van Schaftingen, J. (2016) A Guide to the Choquard Equation. Journal of Fixed Point Theory and Applications, 19, 773-813.
https://doi.org/10.1007/s11784-016-0373-1
[6]  Moroz, V. and Van Schaftingen, J. (2013) Groundstates of Nonlinear Choquard Equations: Existence, Qualitative Properties and Decay Asymptotics. Journal of Functional Analysis, 265, 153-184.
https://doi.org/10.1016/j.jfa.2013.04.007
[7]  Moroz, V. and Van Schaftingen, J. (2015) Groundstates of Nonlinear Choquard Equations: Hardy-Littlewood-Sobolev Critical Exponent. Communications in Contemporary Mathematics, 17, Article 1550005.
https://doi.org/10.1142/s0219199715500054
[8]  Wu, Q., Qin, D. and Chen, J. (2020) Ground States and Non-Existence Results for Choquard Type Equations with Lower Critical Exponent and Indefinite Potentials. Nonlinear Analysis, 197, Article 111863.
https://doi.org/10.1016/j.na.2020.111863
[9]  Li, Y., Li, G. and Tang, C. (2020) Ground State Solutions for Choquard Equations with Hardy-Littlewood-Sobolev Upper Critical Growth and Potential Vanishing at Infinity. Journal of Mathematical Analysis and Applications, 484, Article 123733.
https://doi.org/10.1016/j.jmaa.2019.123733
[10]  Ri, M. and Li, Y. (2024) Ground State Solution for Fractional p-Choquard Equations with Upper Critical Exponent. Journal of Mathematical Analysis and Applications, 534, Article 128073.
https://doi.org/10.1016/j.jmaa.2023.128073
[11]  Li, Q., Teng, K. and Zhang, J. (2020) Ground State Solutions for Fractional Choquard Equations Involving Upper Critical Exponent. Nonlinear Analysis, 197, Article 111846.
https://doi.org/10.1016/j.na.2020.111846
[12]  Cassani, D. and Zhang, J. (2018) Choquard-Type Equations with Hardy-Littlewood-Sobolev Upper-Critical Growth. Advances in Nonlinear Analysis, 8, 1184-1212.
https://doi.org/10.1515/anona-2018-0019
[13]  Abdullah Qadha, S., Chen, H. and Qadha, M.A. (2023) Existence of Ground State Solutions for Choquard Equation with the Upper Critical Exponent. Fractal and Fractional, 7, Article 840.
https://doi.org/10.3390/fractalfract7120840
[14]  Long, L., Li, F. and Zhu, X. (2023) Normalized Solutions to Nonlinear Scalar Field Equations with Doubly Nonlocal Terms and Critical Exponent. Journal of Mathematical Analysis and Applications, 524, Article 127142.
https://doi.org/10.1016/j.jmaa.2023.127142
[15]  Van Schaftingen, J. and Xia, J. (2018) Groundstates for a Local Nonlinear Perturbation of the Choquard Equations with Lower Critical Exponent. Journal of Mathematical Analysis and Applications, 464, 1184-1202.
https://doi.org/10.1016/j.jmaa.2018.04.047
[16]  Tang, X., Wei, J. and Chen, S. (2020) Nehari-Type Ground State Solutions for a Choquard Equation with Lower Critical Exponent and Local Nonlinear Perturbation. Mathematical Methods in the Applied Sciences, 43, 6627-6638.
https://doi.org/10.1002/mma.6404
[17]  Seok, J. (2017) Nonlinear Choquard Equations Involving a Critical Local Term. Applied Mathematics Letters, 63, 77-87.
https://doi.org/10.1016/j.aml.2016.07.027
[18]  Liu, S. and Chen, H. (2023) Existence of Ground-State Solutions for p-Choquard Equations with Singular Potential and Doubly Critical Exponents. Mathematische Nachrichten, 296, 2467-2502.
https://doi.org/10.1002/mana.202100255
[19]  Liu, S. and Chen, H. (2022) Ground State Solutions for Nonlinear Choquard Equation with Singular Potential and Critical Exponents. Journal of Mathematical Analysis and Applications, 507, Article 125799.
https://doi.org/10.1016/j.jmaa.2021.125799
[20]  Li, Y., Li, G. and Tang, C. (2023) Multiplicity and Concentration of Positive Solutions for Critical Choquard Equations with Concave Perturbation. Journal of Mathematical Analysis and Applications, 524, Article 127112.
https://doi.org/10.1016/j.jmaa.2023.127112
[21]  Li, Y., Li, G. and Tang, C. (2020) Existence and Concentration of Solutions for Choquard Equations with Steep Potential Well and Doubly Critical Exponents. Advanced Nonlinear Studies, 21, 135-154.
https://doi.org/10.1515/ans-2020-2110
[22]  Brezis, H. and Nirenberg, L. (1983) Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents. Communications on Pure and Applied Mathematics, 36, 437-477.
https://doi.org/10.1002/cpa.3160360405
[23]  Liu, Y. and Zhang, M. (2024) The Ground State Solutions to a Class of Biharmonic Choquard Equations on Weighted Lattice Graphs. Bulletin of the Iranian Mathematical Society, 50, Article No. 12.
https://doi.org/10.1007/s41980-023-00846-9
[24]  Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., et al. (2020) What Is the Fractional Laplacian? A Comparative Review with New Results. Journal of Computational Physics, 404, Article 109009.
https://doi.org/10.1016/j.jcp.2019.109009
[25]  Lieb, E.H. and Loss, M. (2001) Analysis. American Mathematical Society.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133