|
Pure Mathematics 2025
具有上临界指数的p-Choquard方程基态解的存在性
|
Abstract:
该文讨论下列具有上临界指标的p-Choquard方程 其中 , 是关于Hardy-Littlewood-Sobolev不等式的上临界指数,
[1] | Pekar, S.I. (2022) Untersuchungen über die Elektronentheorie der Kristalle. De Gruyter. |
[2] | Lieb, E.H. (1977) Existence and Uniqueness of the Minimizing Solution of Choquard’s Nonlinear Equation. Studies in Applied Mathematics, 57, 93-105. https://doi.org/10.1002/sapm197757293 |
[3] | Penrose, R. (1996) On Gravity’s Role in Quantum State Reduction. General Relativity and Gravitation, 28, 581-600. https://doi.org/10.1007/bf02105068 |
[4] | Moroz, I.M., Penrose, R. and Tod, P. (1998) Spherically-Symmetric Solutions of the Schrödinger-Newton Equations. Classical and Quantum Gravity, 15, 2733-2742. https://doi.org/10.1088/0264-9381/15/9/019 |
[5] | Moroz, V. and Van Schaftingen, J. (2016) A Guide to the Choquard Equation. Journal of Fixed Point Theory and Applications, 19, 773-813. https://doi.org/10.1007/s11784-016-0373-1 |
[6] | Moroz, V. and Van Schaftingen, J. (2013) Groundstates of Nonlinear Choquard Equations: Existence, Qualitative Properties and Decay Asymptotics. Journal of Functional Analysis, 265, 153-184. https://doi.org/10.1016/j.jfa.2013.04.007 |
[7] | Moroz, V. and Van Schaftingen, J. (2015) Groundstates of Nonlinear Choquard Equations: Hardy-Littlewood-Sobolev Critical Exponent. Communications in Contemporary Mathematics, 17, Article 1550005. https://doi.org/10.1142/s0219199715500054 |
[8] | Wu, Q., Qin, D. and Chen, J. (2020) Ground States and Non-Existence Results for Choquard Type Equations with Lower Critical Exponent and Indefinite Potentials. Nonlinear Analysis, 197, Article 111863. https://doi.org/10.1016/j.na.2020.111863 |
[9] | Li, Y., Li, G. and Tang, C. (2020) Ground State Solutions for Choquard Equations with Hardy-Littlewood-Sobolev Upper Critical Growth and Potential Vanishing at Infinity. Journal of Mathematical Analysis and Applications, 484, Article 123733. https://doi.org/10.1016/j.jmaa.2019.123733 |
[10] | Ri, M. and Li, Y. (2024) Ground State Solution for Fractional p-Choquard Equations with Upper Critical Exponent. Journal of Mathematical Analysis and Applications, 534, Article 128073. https://doi.org/10.1016/j.jmaa.2023.128073 |
[11] | Li, Q., Teng, K. and Zhang, J. (2020) Ground State Solutions for Fractional Choquard Equations Involving Upper Critical Exponent. Nonlinear Analysis, 197, Article 111846. https://doi.org/10.1016/j.na.2020.111846 |
[12] | Cassani, D. and Zhang, J. (2018) Choquard-Type Equations with Hardy-Littlewood-Sobolev Upper-Critical Growth. Advances in Nonlinear Analysis, 8, 1184-1212. https://doi.org/10.1515/anona-2018-0019 |
[13] | Abdullah Qadha, S., Chen, H. and Qadha, M.A. (2023) Existence of Ground State Solutions for Choquard Equation with the Upper Critical Exponent. Fractal and Fractional, 7, Article 840. https://doi.org/10.3390/fractalfract7120840 |
[14] | Long, L., Li, F. and Zhu, X. (2023) Normalized Solutions to Nonlinear Scalar Field Equations with Doubly Nonlocal Terms and Critical Exponent. Journal of Mathematical Analysis and Applications, 524, Article 127142. https://doi.org/10.1016/j.jmaa.2023.127142 |
[15] | Van Schaftingen, J. and Xia, J. (2018) Groundstates for a Local Nonlinear Perturbation of the Choquard Equations with Lower Critical Exponent. Journal of Mathematical Analysis and Applications, 464, 1184-1202. https://doi.org/10.1016/j.jmaa.2018.04.047 |
[16] | Tang, X., Wei, J. and Chen, S. (2020) Nehari-Type Ground State Solutions for a Choquard Equation with Lower Critical Exponent and Local Nonlinear Perturbation. Mathematical Methods in the Applied Sciences, 43, 6627-6638. https://doi.org/10.1002/mma.6404 |
[17] | Seok, J. (2017) Nonlinear Choquard Equations Involving a Critical Local Term. Applied Mathematics Letters, 63, 77-87. https://doi.org/10.1016/j.aml.2016.07.027 |
[18] | Liu, S. and Chen, H. (2023) Existence of Ground-State Solutions for p-Choquard Equations with Singular Potential and Doubly Critical Exponents. Mathematische Nachrichten, 296, 2467-2502. https://doi.org/10.1002/mana.202100255 |
[19] | Liu, S. and Chen, H. (2022) Ground State Solutions for Nonlinear Choquard Equation with Singular Potential and Critical Exponents. Journal of Mathematical Analysis and Applications, 507, Article 125799. https://doi.org/10.1016/j.jmaa.2021.125799 |
[20] | Li, Y., Li, G. and Tang, C. (2023) Multiplicity and Concentration of Positive Solutions for Critical Choquard Equations with Concave Perturbation. Journal of Mathematical Analysis and Applications, 524, Article 127112. https://doi.org/10.1016/j.jmaa.2023.127112 |
[21] | Li, Y., Li, G. and Tang, C. (2020) Existence and Concentration of Solutions for Choquard Equations with Steep Potential Well and Doubly Critical Exponents. Advanced Nonlinear Studies, 21, 135-154. https://doi.org/10.1515/ans-2020-2110 |
[22] | Brezis, H. and Nirenberg, L. (1983) Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents. Communications on Pure and Applied Mathematics, 36, 437-477. https://doi.org/10.1002/cpa.3160360405 |
[23] | Liu, Y. and Zhang, M. (2024) The Ground State Solutions to a Class of Biharmonic Choquard Equations on Weighted Lattice Graphs. Bulletin of the Iranian Mathematical Society, 50, Article No. 12. https://doi.org/10.1007/s41980-023-00846-9 |
[24] | Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., et al. (2020) What Is the Fractional Laplacian? A Comparative Review with New Results. Journal of Computational Physics, 404, Article 109009. https://doi.org/10.1016/j.jcp.2019.109009 |
[25] | Lieb, E.H. and Loss, M. (2001) Analysis. American Mathematical Society. |