|
KIF18B目前在癌症中的研究进展
|
Abstract:
近年来,探究KIFs家族成员在肿瘤发生和发展过程中的功能及作用机制已成为研究热点之一。驱动蛋白超家族包含一类保守的微管依赖性分子运动蛋白,具有腺苷三磷酸酶活性和运动特性。驱动蛋白的主动运动支持多种细胞功能,包括有丝分裂、减数分裂和大分子的转运。有丝分裂是真核细胞分裂的过程,涉及将细胞核、细胞质、细胞器和细胞膜分裂成2个子细胞,这些子细胞成分的部分大致相同。这个过程中的任何错误都可能导致细胞死亡、异常(如基因缺失、染色体易位或重复)和癌症。由于有丝分裂复杂且高度调节,驱动蛋白表达或功能的改变可能导致癌变。此外,由于人类癌症是一种涉及异常细胞生长的基因相关疾病,因此靶向驱动蛋白可能会为控制人类癌症创造一种新的策略。KIF18B属于驱动蛋白家族-8,近年来已经发现部分功能并证明其与多种恶性肿瘤有关。
In recent years, investigating the functions and underlying mechanisms of KIFs family members in tumorigenesis and tumor development has emerged as a prominent research area. The kinesin superfamily consists of a group of conserved microtubule-dependent molecular motor proteins, which possess adenosine triphosphatase activity and motility properties. The active motility of kinesins is crucial for supporting diverse cellular functions, such as mitosis, meiosis, and macromolecular transport. Mitosis, the process of eukaryotic cell division, involves the partitioning of the nucleus, cytoplasm, organelles, and cell membrane into two daughter cells with approximately identical components. Any aberration during this process can give rise to cell death, genetic anomalies (e.g., gene deletions, chromosomal translocations, or duplications), and cancer. Given the complexity and highly regulated nature of mitosis, changes in kinesin expression or function may trigger carcinogenesis. Moreover, as human cancer is a gene-related disorder characterized by abnormal cell growth, targeting kinesins could potentially offer a novel strategy for cancer control. KIF18B belongs to the kinesin family-8. In recent years, certain functions of KIF18B have been identified, and it has been demonstrated to be associated with various malignant tumors.
[1] | Vale, R., Reese, T. and Sheetz, M. (1985) Identification of a Novel Force-Generating Protein, Kinesin, Involved in Microtubule-Based Motility. Cell, 42, 39-50. https://doi.org/10.1016/s0092-8674(85)80099-4 |
[2] | Lawrence, C.J., Dawe, R.K., Christie, K.R., Cleveland, D.W., Dawson, S.C., Endow, S.A., et al. (2004) A Standardized Kinesin Nomenclature. The Journal of Cell Biology, 167, 19-22. https://doi.org/10.1083/jcb.200408113 |
[3] | Miki, H., Setou, M., Kaneshiro, K. and Hirokawa, N. (2001) All Kinesin Superfamily Protein, KIF, Genes in Mouse and Human. Proceedings of the National Academy of Sciences, 98, 7004-7011. https://doi.org/10.1073/pnas.111145398 |
[4] | Yu, Y. and Feng, Y. (2010) The Role of Kinesin Family Proteins in Tumorigenesis and Progression: Potential Biomarkers and Molecular Targets for Cancer Therapy. Cancer, 116, 5150-5160. https://doi.org/10.1002/cncr.25461 |
[5] | Miki, H., Okada, Y. and Hirokawa, N. (2005) Analysis of the Kinesin Superfamily: Insights into Structure and Function. Trends in Cell Biology, 15, 467-476. https://doi.org/10.1016/j.tcb.2005.07.006 |
[6] | Hirokawa, N., Noda, Y. and Okada, Y. (1998) Kinesin and Dynein Superfamily Proteins in Organelle Transport and Cell Division. Current Opinion in Cell Biology, 10, 60-73. https://doi.org/10.1016/s0955-0674(98)80087-2 |
[7] | Hirokawa, N. (1998) Kinesin and Dynein Superfamily Proteins and the Mechanism of Organelle Transport. Science, 279, 519-526. https://doi.org/10.1126/science.279.5350.519 |
[8] | Ishii, Y., Nishiyama, M. and Yanagida, T. (2004) Mechano-Chemical Coupling of Molecular Motors Revealed by Single Molecule Measurements. Current Protein and Peptide Science, 5, 81-87. https://doi.org/10.2174/1389203043486838 |
[9] | Seog, D., Lee, D. and Lee, S. (2004) Molecular Motor Proteins of the Kinesin Superfamily Proteins (KIFs): Structure, Cargo and Disease. Journal of Korean Medical Science, 19, 1-7. https://doi.org/10.3346/jkms.2004.19.1.1 |
[10] | Vale, R.D. and Fletterick, R.J. (1997) The Design Plan of Kinesin Motors. Annual Review of Cell and Developmental Biology, 13, 745-777. https://doi.org/10.1146/annurev.cellbio.13.1.745 |
[11] | Sharp, D.J., Rogers, G.C. and Scholey, J.M. (2000) Microtubule Motors in Mitosis. Nature, 407, 41-47. https://doi.org/10.1038/35024000 |
[12] | Hirokawa, N. and Noda, Y. (2008) Intracellular Transport and Kinesin Superfamily Proteins, KIFs: Structure, Function, and Dynamics. Physiological Reviews, 88, 1089-1118. https://doi.org/10.1152/physrev.00023.2007 |
[13] | Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. (2009) Kinesin Superfamily Motor Proteins and Intracellular Transport. Nature Reviews Molecular Cell Biology, 10, 682-696. https://doi.org/10.1038/nrm2774 |
[14] | Vale, R.D. and Milligan, R.A. (2000) The Way Things Move: Looking under the Hood of Molecular Motor Proteins. Science, 288, 88-95. https://doi.org/10.1126/science.288.5463.88 |
[15] | Gao, T., Yu, L., Fang, Z., Liu, J., Bai, C., Li, S., et al. (2020) KIF18B Promotes Tumor Progression in Osteosarcoma by Activating β-Catenin. Cancer Biology and Medicine, 17, 371-386. https://doi.org/10.20892/j.issn.2095-3941.2019.0452 |
[16] | Lee, Y.M., Kim, E., Park, M., Moon, E., Ahn, S., Kim, W., et al. (2010) Cell Cycle-Regulated Expression and Subcellular Localization of a Kinesin-8 Member Human KIF18B. Gene, 466, 16-25. https://doi.org/10.1016/j.gene.2010.06.007 |
[17] | Walczak, C.E., Zong, H., Jain, S. and Stout, J.R. (2016) Spatial Regulation of Astral Microtubule Dynamics by KIF18B in Ptk Cells. Molecular Biology of the Cell, 27, 3021-3030. https://doi.org/10.1091/mbc.e16-04-0254 |
[18] | Shin, Y., Du, Y., Collier, S.E., Ohi, M.D., Lang, M.J. and Ohi, R. (2015) Biased Brownian Motion as a Mechanism to Facilitate Nanometer-Scale Exploration of the Microtubule Plus End by a Kinesin-8. Proceedings of the National Academy of Sciences, 112, E3826-E3835. https://doi.org/10.1073/pnas.1500272112 |
[19] | Luessing, J., Sakhteh, M., Sarai, N., Frizzell, L., Tsanov, N., Ramberg, K.O., et al. (2021) The Nuclear Kinesin KIF18B Promotes 53BP1-Mediated DNA Double-Strand Break Repair. Cell Reports, 35, Article 109306. https://doi.org/10.1016/j.celrep.2021.109306 |
[20] | Tanenbaum, M.E., Macurek, L., van der Vaart, B., Galli, M., Akhmanova, A. and Medema, R.H. (2011) A Complex of KIF18B and MCAK Promotes Microtubule Depolymerization and Is Negatively Regulated by Aurora Kinases. Current Biology, 21, 1356-1365. https://doi.org/10.1016/j.cub.2011.07.017 |
[21] | McHugh, T. and Welburn, J.P.I. (2022) Potent Microtubule-Depolymerizing Activity of a Mitotic KIF18B-MCAK-EB Network. Journal of Cell Science, 136, jcs260144. https://doi.org/10.1242/jcs.260144 |
[22] | Kim, H., Fonseca, C. and Stumpff, J. (2014) A Unique Kinesin-8 Surface Loop Provides Specificity for Chromosome Alignment. Molecular Biology of the Cell, 25, 3319-3329. https://doi.org/10.1091/mbc.e14-06-1132 |
[23] | Eifler, K., Cuijpers, S.A.G., Willemstein, E., Raaijmakers, J.A., El Atmioui, D., Ovaa, H., et al. (2018) SUMO Targets the APC/C to Regulate Transition from Metaphase to Anaphase. Nature Communications, 9, Article No. 1119. https://doi.org/10.1038/s41467-018-03486-4 |
[24] | van Heesbeen, R.G.H.P., Raaijmakers, J.A., Tanenbaum, M.E., Halim, V.A., Lelieveld, D., Lieftink, C., et al. (2016) Aurora A, MCAK, and KIF18B Promote Eg5-Independent Spindle Formation. Chromosoma, 126, 473-486. https://doi.org/10.1007/s00412-016-0607-4 |
[25] | McHugh, T., Gluszek, A.A. and Welburn, J.P.I. (2018) Microtubule End Tethering of a Processive Kinesin-8 Motor KIF18B Is Required for Spindle Positioning. Journal of Cell Biology, 217, 2403-2416. https://doi.org/10.1083/jcb.201705209 |
[26] | Ari, C., Borysov, S.I., Wu, J., Padmanabhan, J. and Potter, H. (2014) Alzheimer Amyloid Beta Inhibition of Eg5/Kinesin 5 Reduces Neurotrophin and/or Transmitter Receptor Function. Neurobiology of Aging, 35, 1839-1849. https://doi.org/10.1016/j.neurobiolaging.2014.02.006 |
[27] | Duangtum, N., Junking, M., Sawasdee, N., Cheunsuchon, B., Limjindaporn, T. and Yenchitsomanus, P. (2011) Human Kidney Anion Exchanger 1 Interacts with Kinesin Family Member 3B (KIF3B). Biochemical and Biophysical Research Communications, 413, 69-74. https://doi.org/10.1016/j.bbrc.2011.08.050 |
[28] | Nicolas, A., Kenna, K.P., Renton, A.E., et al. (2018) Genome-Wide Analyses Identify KIF5A as a Novel ALSGene. Neuron, 97, 1268-1283.E6. |
[29] | Wei, X., Feng, G., Zhang, H., Xu, Q., Ni, J., Zhao, M., et al. (2020) Pleiotropic Genomic Variants at 17q21.31 Associated with Bone Mineral Density and Body Fat Mass: A Bivariate Genome-Wide Association Analysis. European Journal of Human Genetics, 29, 553-563. https://doi.org/10.1038/s41431-020-00727-3 |
[30] | Kawashima, T., Hirose, K., Satoh, T., Kaneko, A., Ikeda, Y., Kaziro, Y., et al. (2000) Mgcracgap Is Involved in the Control of Growth and Differentiation of Hematopoietic Cells. Blood, 96, 2116-2124. https://doi.org/10.1182/blood.v96.6.2116 |
[31] | Kuilman, T., Michaloglou, C., Mooi, W.J. and Peeper, D.S. (2010) The Essence of Senescence: Figure 1. Genes & Development, 24, 2463-2479. https://doi.org/10.1101/gad.1971610 |
[32] | Demidenko, Z.N., Korotchkina, L.G., Gudkov, A.V. and Blagosklonny, M.V. (2010) Paradoxical Suppression of Cellular Senescence by P53. Proceedings of the National Academy of Sciences, 107, 9660-9664. https://doi.org/10.1073/pnas.1002298107 |
[33] | Xiang, X., Yang, L., Zhang, X., Ma, X., Miao, R., Gu, J., et al. (2019) Seven-Senescence-Associated Gene Signature Predicts Overall Survival for Asian Patients with Hepatocellular Carcinoma. World Journal of Gastroenterology, 25, 1715-1728. https://doi.org/10.3748/wjg.v25.i14.1715 |
[34] | Jung, Y., Cho, J.H., Park, S., Kang, M., Park, S., Choi, D.H., et al. (2019) Lactate Activates the E2F Pathway to Promote Cell Motility by Up-Regulating Microtubule Modulating Genes. Cancers, 11, Article 274. https://doi.org/10.3390/cancers11030274 |
[35] | Lucanus, A.J. and Yip, G.W. (2017) Kinesin Superfamily: Roles in Breast Cancer, Patient Prognosis and Therapeutics. Oncogene, 37, 833-838. https://doi.org/10.1038/onc.2017.406 |
[36] | Itzel, T., Scholz, P., Maass, T., Krupp, M., Marquardt, J.U., Strand, S., et al. (2014) Translating Bioinformatics in Oncology: Guilt-by-Profiling Analysis and Identification of KIF18B and CDCA3 as Novel Driver Genes in Carcinogenesis. Bioinformatics, 31, 216-224. https://doi.org/10.1093/bioinformatics/btu586 |
[37] | Jiang, J., Liu, T., He, X., Ma, W., Wang, J., Zhou, Q., et al. (2021) Silencing of KIF18B Restricts Proliferation and Invasion and Enhances the Chemosensitivity of Breast Cancer via Modulating Akt/GSK‐3β/β‐Catenin Pathway. BioFactors, 47, 754-767. https://doi.org/10.1002/biof.1757 |
[38] | Liu, L., Zhang, Z., Xia, X. and Lei, J. (2022) KIF18B Promotes Breast Cancer Cell Proliferation, Migration and Invasion by Targeting TRIP13 and Activating the Wnt/β-Catenin Signaling Pathway. Oncology Letters, 23, Article No. 112. https://doi.org/10.3892/ol.2022.13232 |
[39] | Yang, B., Wang, S., Xie, H., Wang, C., Gao, X., Rong, Y., et al. (2020) KIF18B Promotes Hepatocellular Carcinoma Progression through Activating Wnt/β‐Catenin‐Signaling Pathway. Journal of Cellular Physiology, 235, 6507-6514. https://doi.org/10.1002/jcp.29444 |
[40] | Wu, Y., Wang, A., Zhu, B., Huang, J., Lu, E., Xu, H., et al. (2018) KIF18B Promotes Tumor Progression through Activating the Wnt/β-Catenin Pathway in Cervical Cancer. OncoTargets and Therapy, 11, 1707-1720. https://doi.org/10.2147/ott.s157440 |
[41] | Li, B., Liu, B., Zhang, X., Liu, H. and He, L. (2019) KIF18B Promotes the Proliferation of Pancreatic Ductal Adenocarcinoma via Activating the Expression of CDCA8. Journal of Cellular Physiology, 235, 4227-4238. https://doi.org/10.1002/jcp.29201 |
[42] | Chen, S., Yu, B., DU, G.T., Huang, T.Y., Zhang, N. and Fu, N. (2024) KIF18B: An Important Role in Signaling Pathways and a Potential Resistant Target in Tumor Development. Discover Oncology, 15, Article No. 430. https://doi.org/10.1007/s12672-024-01330-4 |
[43] | Zhao, F., Feng, Y., Zhang, X., Liu, X. and Li, A. (2020) Kinesin Superfamily Member 18B (KIF18B) Promotes Cell Proliferation in Colon Adenocarcinoma. Cancer Management and Research, 12, 12769-12778. https://doi.org/10.2147/cmar.s261894 |
[44] | Qiu, M., Zhang, L., Chen, Y., Zhu, L., Zhang, B., Li, Q., et al. (2021) KIF18B as a Regulator in Tumor Microenvironment Accelerates Tumor Progression and Triggers Poor Outcome in Hepatocellular Carcinoma. The International Journal of Biochemistry & Cell Biology, 137, Article 106037. https://doi.org/10.1016/j.biocel.2021.106037 |
[45] | Yang, H., Wang, Y., Zhang, Z. and Li, H. (2020) Identification of KIF18B as a Hub Candidate Gene in the Metastasis of Clear Cell Renal Cell Carcinoma by Weighted Gene Co-Expression Network Analysis. Frontiers in Genetics, 11, Article 905. https://doi.org/10.3389/fgene.2020.00905 |
[46] | Hong, B., Lu, R., Lou, W., Bao, Y., Qiao, L., Hu, Y., et al. (2021) KIF18B-Dependent Hypomethylation of PARPBP Gene Promoter Enhances Oxaliplatin Resistance in Colorectal Cancer. Experimental Cell Research, 407, Article 112827. https://doi.org/10.1016/j.yexcr.2021.112827 |
[47] | Xie, J., Wang, B., Luo, W., Li, C. and Jia, X. (2022) Upregulation of KIF18B Facilitates Malignant Phenotype of Esophageal Squamous Cell Carcinoma by Activating CDCA8/mTORC1 Pathway. Journal of Clinical Laboratory Analysis, 36, e24633. https://doi.org/10.1002/jcla.24633 |
[48] | Ji, Z., Pan, X., Shang, Y., Ni, D. and Wu, F. (2019) KIF18B as a Regulator in Microtubule Movement Accelerates Tumor Progression and Triggers Poor Outcome in Lung Adenocarcinoma. Tissue and Cell, 61, 44-50. https://doi.org/10.1016/j.tice.2019.09.001 |
[49] | Zhong, Y., Jiang, L., Long, X., Zhou, Y., Deng, S., Lin, H., et al. (2019) Clinical Significance and Integrative Analysis of Kinesin Family Member 18B in Lung Adenocarcinoma. OncoTargets and Therapy, 12, 9249-9264. https://doi.org/10.2147/ott.s227438 |
[50] | Wu, Y., Ke, Z., Zheng, W., Chen, Y., Zhu, J., Lin, F., et al. (2021) Kinesin Family Member 18B Regulates the Proliferation and Invasion of Human Prostate Cancer Cells. Cell Death & Disease, 12, Article No. 302. https://doi.org/10.1038/s41419-021-03582-2 |
[51] | Li, Q., Sun, M., Meng, Y., Feng, M., Wang, M., Chang, C., et al. (2023) Kinesin Family Member 18B Activates mTORC1 Signaling via Actin Gamma 1 to Promote the Recurrence of Human Hepatocellular Carcinoma. Oncogenesis, 12, Article No. 54. https://doi.org/10.1038/s41389-023-00499-7 |
[52] | Ke, H., Wu, S., Zhang, Y. and Zhang, G. (2022) MiR-139-3p/Kinesin Family Member 18B Axis Suppresses Malignant Progression of Gastric Cancer. Bioengineered, 13, 4528-4536. https://doi.org/10.1080/21655979.2022.2033466 |
[53] | Oh, C., Kang, J.W., Lee, Y., Myung, K., Ha, M., Kang, J., et al. (2020) Role of KIF2C, a Gene Related to ALL Relapse, in Embryonic Hematopoiesis in Zebrafish. International Journal of Molecular Sciences, 21, Article 3127. https://doi.org/10.3390/ijms21093127 |
[54] | Yan, H., Zhu, C. and Zhang, L. (2019) Kinesin Family Member 18B: A Contributor and Facilitator in the Proliferation and Metastasis of Cutaneous Melanoma. Journal of Biochemical and Molecular Toxicology, 33, e22409. https://doi.org/10.1002/jbt.22409 |
[55] | Zhang, W. and Liu, Z. (2022) MiRNA-139-3p Inhibits Malignant Progression in Urothelial Carcinoma of the Bladder via Targeting KIF18B and Inactivating Wnt/Beta-Catenin Pathway. Pharmacogenetics and Genomics, 33, 1-9. https://doi.org/10.1097/fpc.0000000000000485 |
[56] | Davis, A.J., Tsinkevich, M., Rodencal, J., Abbas, H.A., Su, X., Gi, Y., et al. (2020) TAp63-Regulated miRNAs Suppress Cutaneous Squamous Cell Carcinoma through Inhibition of a Network of Cell-Cycle Genes. Cancer Research, 80, 2484-2497. https://doi.org/10.1158/0008-5472.can-19-1892 |