全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computational Equivalence in ER = EPR

DOI: 10.4236/jhepgc.2025.112030, PP. 356-402

Keywords: Einstein-Rosen Bridges, EPR States, Quantum Complexity, Computational Structure, Quantum Information Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work presents a mathematical proof of the ER = EPR conjecture, demonstrating that Einstein-Rosen bridges (wormholes) and quantum entanglement are manifestations of the same underlying computational structure. Our framework establishes quantum circuit complexity as a physical observable and proves an exact correspondence between geometric and quantum descriptions through operator equivalence and category theory. We show how spacetime geometry emerges from patterns of computational complexity, providing a novel resolution to the black hole information paradox based on computational accessibility rather than information loss. Our framework makes specific, testable predictions for gravitational wave signatures from black hole mergers and proposes new quantum telescope protocols for directly measuring complexity signatures across astronomical distances. Multiple independent tests verify the correspondence across different physical scales and energy regimes. These results suggest that computational structure may be more fundamental than either geometry or quantum mechanics, potentially revolutionizing our understanding of quantum gravity and the nature of spacetime. We discuss the theoretical implications and outline concrete experimental paths for verification.

References

[1]  Maldacena, J. and Susskind, L. (2013) Cool Horizons for Entangled Black Holes. Fortschritte der Physik, 61, 781-811.
https://doi.org/10.1002/prop.201300020
[2]  Susskind, L. (2016) Computational Complexity and Black Hole Horizons. Fortschritte der Physik, 64, 24-43.
https://doi.org/10.1002/prop.201500092
[3]  Ryu, S. and Takayanagi, T. (2006) Holographic Derivation of Entanglement Entropy from the Anti-de Sitter Space/Conformal Field Theory Correspondence. Physical Review Letters, 96, Article 181602.
https://doi.org/10.1103/physrevlett.96.181602
[4]  Brown, A.R. and Susskind, L. (2018) Second Law of Quantum Complexity. Physical Review D, 97, Article 086015.
https://doi.org/10.1103/physrevd.97.086015
[5]  Van Raamsdonk, M. (2010) Building up Spacetime with Quantum Entanglement. General Relativity and Gravitation, 42, 2323-2329.
https://doi.org/10.1007/s10714-010-1034-0
[6]  Stanford, D. and Susskind, L. (2014) Complexity and Shock Wave Geometries. Physical Review D, 90, Article 126007.
https://doi.org/10.1103/physrevd.90.126007
[7]  Nye, L. (2025) Quantum Circuit Complexity as a Physical Observable. Journal of Applied Mathematics and Physics, 13, 87-137.
https://doi.org/10.4236/jamp.2025.131004
[8]  Brown, A.R., et al. (2019) Complexity Growth in Integrable and Chaotic Models. Physical Review D, 100, Article 104020.
[9]  Hayden, P. and Preskill, J. (2007) Black Holes as Mirrors: Quantum Information in Random Subsystems. Journal of High Energy Physics, 2007, 120-120.
https://doi.org/10.1088/1126-6708/2007/09/120
[10]  Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., et al. (2019) Tests of General Relativity with GW170817. Physical Review Letters, 123, Article 011102.
https://doi.org/10.1103/physrevlett.123.011102
[11]  Preskill, J. (2018) Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79.
https://doi.org/10.22331/q-2018-08-06-79
[12]  Gottesman, D., Jennewein, T. and Croke, S. (2012) Longer-Baseline Telescopes Using Quantum Repeaters. Physical Review Letters, 109, Article 070503.
https://doi.org/10.1103/physrevlett.109.070503
[13]  Nielsen, M.A. (2006) A Geometric Approach to Quantum Circuit Lower Bounds. Quantum Information and Computation, 6, 213-262.
https://doi.org/10.26421/qic6.3-2
[14]  Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, 061102.
https://doi.org/10.1103/physrevlett.116.061102
[15]  Kitaev, A.Y., Shen, A.H. and Vyalyi, M.N. (2002) Classical and Quantum Codes. In: Graduate Studies in Mathematics, Vol. 47, American Mathematical Society, 151-175.
https://doi.org/10.1090/gsm/047/18
[16]  von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press.
[17]  Reed, M. and Simon, B. (1978) Methods of Modern Mathematical Physics: Vol. IV, Analysis of Operators. Academic Press.
[18]  Witten, E. (2020) A Mini-Introduction to Information Theory. La Rivista del Nuovo Cimento, 43, 187-227.
https://doi.org/10.1007/s40766-020-00004-5
[19]  MacLane, S. (1998) Categories for the Working Mathematician. Springer-Verlag.
[20]  Almheiri, A., Marolf, D., Polchinski, J. and Sully, J. (2013) Black Holes: Complementarity or Firewalls? Journal of High Energy Physics, 2013, Article No. 62.
https://doi.org/10.1007/jhep02(2013)062
[21]  Roberts, D.A. and Yoshida, B. (2017) Chaos and Complexity by Design. Journal of High Energy Physics, 2017, Article No. 121.
https://doi.org/10.1007/jhep04(2017)121
[22]  Giddings, S. B. and Weinberg, S. (2019) Quantum Extensions of the Schwarzschild Solution. Physical Review D, 100, Article 124023.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133