Accurate estimation of aboveground biomass (AGB) at regional scales remains challenging, particularly in diverse ecosystems like Zambia. This study developed an integrated approach combining spaceborne LiDAR (GEDI), synthetic aperture radar (Sentinel-1), and multispectral (Sentinel-2) measurements to generate footprints of 25 m diameter, 10 and 20 meter resolution maps of AGB across Zambia. Random Forest (RF) regression was employed to establish relationships between GEDI AGB product and Sentinel’s variables. Feature importance analysis revealed that Near-Infrared (NIR) and Shortwave Infrared (SWIR) bands were the most significant predictors, particularly in arid regions. The model performance varied significantly across different land cover types, with R2 values of 0.453, 0.178, and 0.054 for Savanna, Grasslands, and Woody savanna, respectively. However, the overall model validation showed moderate performance with R2 of 0.508 for AGB estimation. While these results demonstrate the potential of multi-sensor data integration for large-scale vegetation structure monitoring, they also highlight the challenges in achieving consistent accuracy across heterogeneous landscapes. Future research should focus on enhancing model performance through improved calibration strategies, better incorporation of ecosystem-specific characteristics, and collection of reliable ground measurements.
References
[1]
Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C. B., Sinca, F., & Martinez, P. (2021). Airborne Laser-Guided Imaging Spectroscopy to Map Forest Trait Diversity and Guide Conservation. Science, 371, 228-231. https://doi.org/10.1126/science.abd4690
[2]
Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., & Willcock, S. (2019). An Integrated Pan-Tropical Biomass Map Using Multiple Reference Datasets. Global Change Biology, 25, 1746-1760.
[3]
Baccini, A., Laporte, N., Goetz, S. J., Sun, M., & Dong, H. (2008). A First Map of Tropical Africa’s Above-Ground Biomass Derived from Satellite Imagery. Environmental Research Letters, 3, Article ID: 045011. https://doi.org/10.1088/1748-9326/3/4/045011
[4]
Bayle, A., Tillon, L., & Martin, J. (2019). Effects of Forest Management on Beetle Diversity: Implications for Conservation. Forest Ecology and Management, 433, 729-737.
[5]
Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C. et al. (2020). Land Use and Climate Change Impacts on Global Soil Erosion by Water (2015-2070). Proceedings of the National Academy of Sciences, 117, 21994-22001. https://doi.org/10.1073/pnas.2001403117
[6]
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/a:1010933404324
[7]
Bullock, E. L., Woodcock, C. E., Souza, C., & Olofsson, P. (2020). Satellite‐Based Estimates Reveal Widespread Forest Degradation in the Amazon. Global Change Biology, 26, 2956-2969. https://doi.org/10.1111/gcb.15029
[8]
Chi, H., Sun, G., Huang, J., Guo, Z., Ni, W., & Fu, A. (2015). National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China. Remote Sensing, 7, 5534-5564. https://doi.org/10.3390/rs70505534
[9]
Chidumayo, E. N. (2020). Deforestation and Biomass Production in Miombo Woodlands: A Carbon Balance Perspective. Global Ecology and Conservation, 21, e00845.
[10]
Chu, T., Guo, X., & Takeda, K. (2023). Global 30 m Impervious Surface Area Dynamics from 1985 to 2020 Using Landsat and Nighttime Light Data. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 185-200.
[11]
Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. et al. (2018). The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sensing of Environment, 219, 145-161. https://doi.org/10.1016/j.rse.2018.09.002
[12]
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F. et al. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026
[13]
Dubayah, R., Armston, J., Healey, S. P., Yang, Z., Patterson, P. L., Saarela, S., & Tang, H. (2022). GEDI L4A Footprint Level Aboveground Biomass Density, Version 2.1. Earth System Science Data, 14, 5727-5754.
[14]
Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S. et al. (2020). The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography. Science of Remote Sensing, 1, Article ID: 100002. https://doi.org/10.1016/j.srs.2020.100002
[15]
Duncanson, L. et al. (2021). Aboveground Biomass Density Models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission. Remote Sensing of Environment, 258, Article ID: 113147.
[16]
Gupta, A., Singh, K. K., Valbuena, R., & Dubayah, R. (2022). Synergizing GEDI and Sen-tinel-2 for Wall-to-Wall Mapping of Tall and Short Crops. Remote Sensing of Environment, 284, Article ID: 113335.
[17]
Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M. et al. (2021). Global Maps of Twenty-First Century Forest Carbon Fluxes. Nature Climate Change, 11, 234-240. https://doi.org/10.1038/s41558-020-00976-6
[18]
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A. et al. (2020). Asynchronous Carbon Sink Saturation in African and Amazonian Tropical Forests. Nature, 579, 80-87. https://doi.org/10.1038/s41586-020-2035-0
[19]
Kellner, J. R., Armston, J., & Duncanson, L. (2023). Algorithm Theoretical Basis Document for GEDI Footprint Aboveground Biomass Density. Earth and Space Science, 10, e2022EA002516. https://doi.org/10.1029/2022ea002516
[20]
Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Del Bom Espirito‐Santo, F. et al. (2005). Estimates of Forest Canopy Height and Aboveground Biomass Using ICESat. Geophysical Research Letters, 32, L22S02. https://doi.org/10.1029/2005gl023971
[21]
Lu, D., Weng, Q., Li, G., Moran, E., & Hetrick, S. (2018). Remote Sensing of Impervious Surfaces in the Urban Areas: Requirements, Methods, and Trends. Remote Sensing of Environment, 117, 34-49.
[22]
McNicol, I. M. et al. (2019). Aboveground Carbon Storage and Its Links to Stand Structure in Miombo Woodlands of Tanzania. Forest Ecology and Management, 433, 217-225.
[23]
McNicol, I. M., Ryan, C. M., & Mitchard, E. T. A. (2020). Carbon Losses from Deforestation and Widespread Degradation Offset by Extensive Growth in African Woodlands. Nature Communications, 9, Article No. 3045.
[24]
Mermoz, S., Bouvet, A., Le Toan, T., Villard, L., Réjou-Méchain, M., & Seifert-Granzin, J. (2022). Biomass Prediction in Tropical Forests: The Canopy Height Effect in L-Band Radar Backscatter. RemoteSensing of Environment, 272, 112948.
[25]
Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C., Kommareddy, A. et al. (2021). Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sensing of Environment, 253, Article ID: 112165. https://doi.org/10.1016/j.rse.2020.112165
[26]
Poulter, B. et al. (2023). Global Trends in Carbon Sinks and Their Variability under Climate Change. Nature Climate Change, 13, 343-350.
[27]
Qi, W., & Dubayah, R. O. (2016). Combining Tandem-X InSAR and Simulated GEDI Lidar Observations for Forest Structure Mapping. Remote Sensing of Environment, 187, 253-266. https://doi.org/10.1016/j.rse.2016.10.018
[28]
Rifai, S. W., Li, S., & Malhi, Y. (2022). Savanna Vegetation Structure and Demography under Global Change. Annual Review of Environment and Resources, 47, 259-284. https://doi.org/10.1146/annurev-environ-120920-102939
[29]
Ryan, C. M., Pritchard, R., McNicol, I., Owen, M., Fisher, J. A., & Lehmann, C. (2019). Ecosystem Services from Southern African Woodlands and Their Future under Global Change. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, Article ID: 20150312. https://doi.org/10.1098/rstb.2015.0312
[30]
Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N. et al. (2019). Mangrove Canopy Height Globally Related to Precipitation, Temperature and Cyclone Frequency. Nature Geoscience, 12, 40-45. https://doi.org/10.1038/s41561-018-0279-1
[31]
Simard, M., Pinto, N., Fisher, J. B., & Baccini, A. (2011). Mapping Forest Canopy Height Globally with Spaceborne Lidar. Journal of Geophysical Research, 116, G04021. https://doi.org/10.1029/2011jg001708
[32]
Tamiminia, H., Homayouni, S., & McNairn, H. (2018). A Review of Machine Learning Approaches for Land Use/Land Cover Classification Using Remote Sensing Data. International Journal of Remote Sensing, 39, 5172-5193.
[33]
Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y., & Liu, H. (2019). Carbon Pools in China’s Terrestrial Ecosystems: New Estimates Based on an Intensive Field Survey. Proceedings of the National Academy of Sciences (PNAS), 116, 8623-8628. https://doi.org/10.1073/pnas.1812865116
[34]
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E. et al. (2012). GMES Sentinel-1 Mission. Remote Sensing of Environment, 120, 9-24. https://doi.org/10.1016/j.rse.2011.05.028
[35]
Vincent, J. B. et al. (2019). Human Disturbance Increases Functional But not Phylogenetic Diversity in Tropical Forests. Nature Communications, 10, 2618.
[36]
Weier, J., & Herring, D. (2000). Measuring Vegetation (NDVI & EVI). NASA Earth Observatory. https://earthobservatory.nasa.gov/features/MeasuringVegetation
[37]
Wulder, M. A., & Coops, N. C. (2018). Satellite-Based Time Series Models for Monitoring Forests. Nature Climate Change, 8, 924-928.
[38]
Zhu, Z., Woodcock, C. E., & Olofsson, P. (2015). Continuous Monitoring of Forest Disturbance Using All Available Landsat Data. Remote Sensing of Environment, 164, 152-171.