全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diagnosis of JJAS Flood/Drought Events and the Associated Atmospheric Circulation Anomalies over Ethiopia

DOI: 10.4236/gep.2025.134009, PP. 159-185

Keywords: ENSO, Ethiopian Rainfall Variability, Flood and Drought, JJAS Precipitation, Sea Surface Temperature Anomalies, Wind Circulation Patterns

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the major drivers of Ethiopian JJAS rainfall variability is crucial for monitoring climate extremes such as drought and flood events, which have serious implications for lives, livelihoods and food security. This study investigates the atmospheric and oceanic mechanisms that modulate JJAS rainfall using composite analysis, probability evaluation of the Z-index, and correlation analysis with leading climate drivers, including sea surface temperatures (SSTs), wind circulation, and outgoing longwave radiation (OLR). The results show that 40.3% of JJAS rainfall is normal, 29.5% and 30.2% are dry and wet, respectively. Wet years have sharply increased since 1998, showing a shift in the rainfall patterns. Wind circulation analysis shows that 850 hPa westerly and 200 hPa easterly winds occur during wet years, which enhance the transport of moisture and convection, whereas dry years have their wind patterns in reverse, suppressing rainfall. The correlation of Sea Surface Temperature with rainfall in JJAS has a very significant negative correlation (?0.8) in central and eastern Pacific SSTs, indicating La Ni?a enhancing rainfall and El Ni?o deficit it. Conversely, a significant positive correlation (0.8) in the western Pacific modulating the regional SST anomaly Ethiopian rainfall. The Nino 3.4 Index shows a significant negative relationship (?0.5 to ?0.8) with Ethiopia’s JJAS rain, especially in the northeast, central, and eastern regions, the key role of the ENSO in rainfall variability. Moreover, the negative OLR anomaly and high RH, promote cloudiness and precipitation, while dry years are distinguished by the higher OLR anomaly and reduced RH, which suppress convection. These results confirm the leading influence of the El Nino-Southern Oscillation (ENSO) in controlling Ethiopian rainfall variability and suggest that monitoring of SST structure, particularly the Nino 3.4 Index, might enhance seasonal rainfall prediction and inform the Ethiopian climatic change strategy. Future studies should incorporate high-resolution modeling, improved observations, advanced statistics, and Machine Learning to better comprehend Ethiopia’s climate extremes.

References

[1]  Abdi, A. M., Vrieling, A., Yengoh, G. T., Anyamba, A., Seaquist, J. W., Ummenhofer, C. C. et al. (2016). The El Niño—La Niña Cycle and Recent Trends in Supply and Demand of Net Primary Productivity in African Drylands. Climatic Change, 138, 111-125.
https://doi.org/10.1007/s10584-016-1730-1
[2]  Alemayehu, A., & Bewket, W. (2017). Local Spatiotemporal Variability and Trends in Rainfall and Temperature in the Central Highlands of Ethiopia. Geografiska Annaler: Series A, Physical Geography, 99, 85-101.
https://doi.org/10.1080/04353676.2017.1289460
[3]  Alexander, F., & Nyasulu, M. (2021). Diagnosis of Wet and Dry Events and Its Associated Atmospheric Circulation Anomaly over Malawi, Southeast Africa. Dynamics of Atmospheres and Oceans, 94, Article ID: 101221.
https://doi.org/10.1016/j.dynatmoce.2021.101221
[4]  Alhamshry, A., Fenta, A. A., Yasuda, H., Kimura, R., & Shimizu, K. (2019). Seasonal Rainfall Variability in Ethiopia and Its Long-Term Link to Global Sea Surface Temperatures. Water, 12, Article No. 55.
https://doi.org/10.3390/w12010055
[5]  Ayehu, G. T., Tadesse, T., Gessesse, B., & Dinku, T. (2018). Validation of New Satellite Rainfall Products over the Upper Blue Nile Basin, Ethiopia. Atmospheric Measurement Techniques, 11, 1921-1936.
https://doi.org/10.5194/amt-11-1921-2018
[6]  Berihu, T., Chen, W., & Wang, L. (2024). Rainfall Variability and Its Teleconnection with Atmospheric Circulation Anomalies over Southern and Southeastern Region, Ethiopia. Theoretical and Applied Climatology, 155, 5819-5834.
https://doi.org/10.1007/s00704-024-04956-0
[7]  Bewket, W., & Conway, D. (2007). A Note on the Temporal and Spatial Variability of Rainfall in the Drought‐prone Amhara Region of Ethiopia. International Journal of Climatology, 27, 1467-1477.
https://doi.org/10.1002/joc.1481
[8]  Cheung, W. H., Senay, G. B., & Singh, A. (2008). Trends and Spatial Distribution of Annual and Seasonal Rainfall in Ethiopia. International Journal of Climatology, 28, 1723-1734.
https://doi.org/10.1002/joc.1623
[9]  CIAT, BFS/USAID (2017). Climate-Smart Agriculture in Ethiopia. CSA Country Profiles for Africa Series (26 p.). International Center for Tropical Agriculture (CIAT); Bureau for Food Security, United States Agency for International Development (BFS/USAID).
[10]  Climate Risk Profile (n.d.). Ethiopia (2021). The World Bank Group.
[11]  Conway, D. (2000). The Climate and Hydrology of the Upper Blue Nile River. The Geographical Journal, 166, 49-62.
https://doi.org/10.1111/j.1475-4959.2000.tb00006.x
[12]  Conway, D., & Schipper, E. L. F. (2011). Adaptation to Climate Change in Africa: Challenges and Opportunities Identified from Ethiopia. Global Environmental Change, 21, 227-237.
https://doi.org/10.1016/j.gloenvcha.2010.07.013
[13]  Dai, A. (2011). Drought under Global Warming: A Review. WIREs Climate Change, 2, 45-65.
https://doi.org/10.1002/wcc.81
[14]  Degefu, M. A., Rowell, D. P., & Bewket, W. (2017). Teleconnections between Ethiopian Rainfall Variability and Global SSTs: Observations and Methods for Model Evaluation. Meteorology and Atmospheric Physics, 129, 173-186.
https://doi.org/10.1007/s00703-016-0466-9
[15]  Deressa, T. T., Hassan, R. M., Ringler, C., Alemu, T., & Yesuf, M. (2009). Determinants of Farmers’ Choice of Adaptation Methods to Climate Change in the Nile Basin of Ethiopia. Global Environmental Change, 19, 248-255.
https://doi.org/10.1016/j.gloenvcha.2009.01.002
[16]  Diao, X., Ellis, M., Pauw, K., & Thurlow, J. (2023). Ethiopia’s Agrifood System Structure and Drivers of Transformation.
[17]  Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H. et al. (2018). Validation of the CHIRPS Satellite Rainfall Estimates over Eastern Africa. Quarterly Journal of the Royal Meteorological Society, 144, 292-312.
https://doi.org/10.1002/qj.3244
[18]  Diro, G. T., Grimes, D. I. F., & Black, E. (2011). Teleconnections between Ethiopian Summer Rainfall and Sea Surface Temperature: Part I—Observation and Modelling. Climate Dynamics, 37, 103-119.
https://doi.org/10.1007/s00382-010-0837-8
[19]  Diro, G. T., Grimes, D. I. F., & Black, E. (2015). Large Scale Features Affecting Ethiopian Rainfall. In C. J. R. Williams, & D. R. Kniveton (Eds.), Advances in Global Change Research (pp. 13-50). Springer.
https://doi.org/10.1007/978-90-481-3842-5_2
[20]  Dogan, S., Berktay, A., & Singh, V. P. (2012). Comparison of Multi-Monthly Rainfall-Based Drought Severity Indices, with Application to Semi-Arid Konya Closed Basin, Turkey. Journal of Hydrology, 470, 255-268.
https://doi.org/10.1016/j.jhydrol.2012.09.003
[21]  Dong, J., Xing, L., Cui, N., Zhao, L., Guo, L., & Gong, D. (2023). Standardized Precipitation Evapotranspiration Index (SPEI) Estimated Using Variant Long Short-Term Memory Network at Four Climatic Zones of China. Computers and Electronics in Agriculture, 213, Article ID: 108253.
https://doi.org/10.1016/j.compag.2023.108253
[22]  FAO (2016). AQUASTAT Country Profile—Ethiopia. Food and Agriculture Organization of the United Nations (FAO).
[23]  Folland, C. K. (1983). Regional-Scale Interannual Variability of Climate. A Northwest European Perspective. Meteorological Magazine, 112, 163-183.
[24]  Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S. et al. (2015). The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Scientific Data, 2, Article ID: 150066.
https://doi.org/10.1038/sdata.2015.66
[25]  Gamachu, D. (1988). Some Patterns of Altitudinal Variation of Climatic Elements in the Mountainous Regions of Ethiopia. Mountain Research and Development, 8, Article No. 131.
https://doi.org/10.2307/3673439
[26]  Gissila, T., Black, E., Grimes, D. I. F., & Slingo, J. M. (2004). Seasonal Forecasting of the Ethiopian Summer Rains. International Journal of Climatology, 24, 1345-1358.
https://doi.org/10.1002/joc.1078
[27]  Gobie, B. G., & Miheretu, B. A. (2021). Effects of El Nino Southern Oscillation Events on Rainfall Variability over Northeast Ethiopia. Modeling Earth Systems and Environment, 7, 2733-2739.
https://doi.org/10.1007/s40808-020-01060-w
[28]  Gummadi, S., Rao, K. P. C., Seid, J., Legesse, G., Kadiyala, M. D. M., Takele, R. et al. (2017). Spatio-Temporal Variability and Trends of Precipitation and Extreme Rainfall Events in Ethiopia in 1980-2010. Theoretical and Applied Climatology, 134, 1315-1328.
https://doi.org/10.1007/s00704-017-2340-1
[29]  Holton, J. R., & Hakim, G. J. (2013). An Introduction to Dynamic Meteorology (p. 88). Academic Press.
[30]  Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H. et al. (2017). Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30, 8179-8205.
https://doi.org/10.1175/jcli-d-16-0836.1
[31]  Jury, M. R., & Funk, C. (2013). Climatic Trends over Ethiopia: Regional Signals and Drivers. International Journal of Climatology, 33, 1924-1935.
https://doi.org/10.1002/joc.3560
[32]  Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L. et al. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437-471.
https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
[33]  Kassahun, B. (1987). Weather Systems over Ethiopia. In Proceedings of 1st Tech Conference on Meteorological Research in Eastern and Southern Africa (pp. 53-57). UCAR.
[34]  Kebede, S., Travi, Y., Alemayehu, T., & Marc, V. (2006). Water Balance of Lake Tana and Its Sensitivity to Fluctuations in Rainfall, Blue Nile Basin, Ethiopia. Journal of Hydrology, 316, 233-247.
https://doi.org/10.1016/j.jhydrol.2005.05.011
[35]  Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E. et al. (2001). The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bulletin of the American Meteorological Society, 82, 247-267.
https://doi.org/10.1175/1520-0477(2001)082<0247:tnnyrm>2.3.co;2
[36]  Korecha, D., & Barnston, A. G. (2007). Predictability of June-September Rainfall in Ethiopia. Monthly Weather Review, 135, 628-650.
https://doi.org/10.1175/mwr3304.1
[37]  Makula, E. K., & Zhou, B. (2021). Changes in March to May Rainfall over Tanzania during 1978-2017. International Journal of Climatology, 41, 5663-5675.
https://doi.org/10.1002/joc.7146
[38]  MoEF (Ministry of Environment and Forest) (2015). Ethiopia’s Second National Communication to the United Nations Framework Convention on Climate Change (UNFCCC). The Federal Democratic Republic of Ethiopia.
https://unfccc.int/resource/docs/natc/ethnc2.pdf
[39]  Mulualem Abera, W., & Wen, W. (2021). Interannual Variability of Seasonal Rainfall and Associated Circulations over Gambella, Ethiopia. International Journal of Environmental Monitoring and Analysis, 9, Article No. 67.
https://doi.org/10.11648/j.ijema.20210903.13
[40]  Ngoma, H., Wen, W., Ojara, M., & Ayugi, B. (2021). Assessing Current and Future Spatiotemporal Precipitation Variability and Trends over Uganda, East Africa, Based on CHIRPS and Regional Climate Model Datasets. Meteorology and Atmospheric Physics, 133, 823-843.
https://doi.org/10.1007/s00703-021-00784-3
[41]  Nicholson, S. E. (2017). Climate and Climatic Variability of Rainfall over Eastern Africa. Reviews of Geophysics, 55, 590-635.
https://doi.org/10.1002/2016rg000544
[42]  Nicholson, S. E. (2018). The ITCZ and the Seasonal Cycle over Equatorial Africa. Bulletin of the American Meteorological Society, 99, 337-348.
https://doi.org/10.1175/bams-d-16-0287.1
[43]  OCHA (2024). Ethiopia—Situation Report.
https://www.unocha.org/publications/report/ethiopia/ethiopia-situation-report-10-jan-2024
[44]  Ogwang, B. A., Guirong, T., & Haishan, C. (2012). Diagnosis of September-November Drought and the Associated Circulation Anomalies over Uganda. Pakistan Journal of Meteorology, 9, 11-24.
http://www.pmd.gov.pk/rnd/rnd_files/vol8_issue17/2.pdf
[45]  Segele, Z. T., & Lamb, P. J. (2005). Characterization and Variability of Kiremt Rainy Season over Ethiopia. Meteorology and Atmospheric Physics, 89, 153-180.
https://doi.org/10.1007/s00703-005-0127-x
[46]  Segele, Z. T., Lamb, P. J., & Leslie, L. M. (2009). Large‐Scale Atmospheric Circulation and Global Sea Surface Temperature Associations with Horn of Africa June-September Rainfall. International Journal of Climatology, 29, 1075-1100.
https://doi.org/10.1002/joc.1751
[47]  Seleshi, Y., & Zanke, U. (2004). Recent Changes in Rainfall and Rainy Days in Ethiopia. International Journal of Climatology, 24, 973-983.
https://doi.org/10.1002/joc.1052
[48]  Suribabu, C. R., & Sujatha, E. R. (2019). Evaluation of Moisture Level Using Precipitation Indices as a Landslide Triggering Factor—A Study of Coonoor Hill Station. Climate, 7, Article No. 111.
https://doi.org/10.3390/cli7090111
[49]  Tan, G., Sun, Z., & Chen, H. (2003). Diagnosis of Summertime Floods/Droughts and Their Atmospheric Circulation Anomalies over North China. Acta Meteorologica Sinica (English Edition), No. 3, 257–273.
[50]  UNISDR (2015). The Human Cost of Weather-Related Disasters 1995-2015.
https://www.unisdr.org/files/46796_cop21weatherdisastersreport2015.pdf
[51]  Viste, E., & Sorteberg, A. (2013). Moisture Transport into the Ethiopian Highlands. International Journal of Climatology, 33, 249-263.
https://doi.org/10.1002/joc.3409
[52]  Von Storch, H., & Zwiers, F. W. (1984). Statistical Analysis in Climate Research. Cambridge University Press.
https://doi.org/10.1017/CBO9780511612336
[53]  Wang, Z. W., Zhai, P. M., & Zhang, H. T. (2003). Variation of Drought over Northern China during 1950-2000. Journal of Geographical Sciences, 13, 480-487.
https://doi.org/10.1007/bf02837887
[54]  Wilks, D. S. (2006). Statistical Methods in the Atmospheric Sciences (2nd ed.). Academic Press.
[55]  Wilks, D. S. (2011). Statistical Methods in the Atmospheric Sciences (p. 100). Academic Press.
[56]  World Bank Group (2024). Ethiopia Country Climate and Development Report, February 2024. CCDR Series. World Bank.
http://hdl.handle.net/10986/41114
[57]  Wu, H., Hayes, M. J., Weiss, A., & Hu, Q. (2001). An Evaluation of the Standardized Precipitation Index, the China‐Z Index and the Statistical Z‐Score. International Journal of Climatology, 21, 745-758.
https://doi.org/10.1002/joc.658

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133