全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

AI: The Effectiveness of Early Cancer Detection Programs Using AI Algorithms

DOI: 10.4236/abcr.2025.142004, PP. 51-56

Keywords: AI Algorithms, Early Cancer Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

Early detection is important for cancer control, improving patient survival and reducing unnecessary treatment. Methods for early detection of cancer include screening programs, risk stratification, and rapid diagnostic pathways. Nevertheless, limited diagnostic workforces, variability in the added value of screening efficiency, and delays in referral remain impediments to appropriate early detection, especially in post-pandemic healthcare environments. Machine learning (ML) and artificial intelligence (AI) have recently become transformative approaches that can help overcome these limitations for improved diagnostic accuracy, workflow efficiency, and patient selection for screening programs when applied to complex health data. Deep learning algorithms and convolutional neural networks are among the data-driven models that have yielded promising results in manipulating radiological images, pathology slides, and electronic health records for better risk stratification and early diagnosis. AI applications also help to identify cancer recurrence and automate clinical workflows where there are capacity limitations. Even considering these developments, sustainable research into ethical dilemmas, patient data security, biases in AI training datasets, and regulatory compliance represent key areas for ongoing investigations. This review discusses AI in the context of early cancer detection, its use in screening and diagnosis, and the barriers to broader clinical implementation.

References

[1]  McPhail, S., Johnson, S., Greenberg, D., Peake, M. and Rous, B. (2015) Stage at Diagnosis and Early Mortality from Cancer in England. British Journal of Cancer, 112, S108-S115.
https://doi.org/10.1038/bjc.2015.49
[2]  Blandin Knight, S., Crosbie, P.A., Balata, H., Chudziak, J., Hussell, T. and Dive, C. (2017) Progress and Prospects of Early Detection in Lung Cancer. Open Biology, 7, Article ID: 170070.
https://doi.org/10.1098/rsob.170070
[3]  National Cancer Registration and Analysis Service: Staging Data in England.
[4]  Sasieni, P. (2003) Evaluation of the UK Breast Screening Programmes. Annals of Oncology, 14, 1206-1208.
https://doi.org/10.1093/annonc/mdg325
[5]  Maroni, R., Massat, N.J., Parmar, D., Dibden, A., Cuzick, J., Sasieni, P.D., et al. (2020) A Case-Control Study to Evaluate the Impact of the Breast Screening Programme on Mortality in England. British Journal of Cancer, 124, 736-743.
https://doi.org/10.1038/s41416-020-01163-2
[6]  Esserman, L.J., Anton-Culver, H., Borowsky, A., Brain, S., Cink, T., Crawford, B., et al. (2017) The WISDOM Study: Breaking the Deadlock in the Breast Cancer Screening Debate. npj Breast Cancer, 3, Article No. 34.
https://doi.org/10.1038/s41523-017-0035-5
[7]  McKinney, S.M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., et al. (2020) International Evaluation of an AI System for Breast Cancer Screening. Nature, 577, 89-94.
https://doi.org/10.1038/s41586-019-1799-6
[8]  Kim, H., Kim, H.H., Han, B., Kim, K.H., Han, K., Nam, H., et al. (2020) Changes in Cancer Detection and False-Positive Recall in Mammography Using Artificial Intelligence: A Retrospective, Multireader Study. The Lancet Digital Health, 2, e138-e148.
https://doi.org/10.1016/s2589-7500(20)30003-0
[9]  Rodriguez-Ruiz, A., Lång, K., Gubern-Merida, A., Broeders, M., Gennaro, G., Clauser, P., et al. (2019) Stand-alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison with 101 Radiologists. JNCI: Journal of the National Cancer Institute, 111, 916-922.
https://doi.org/10.1093/jnci/djy222
[10]  Schaffter, T., Buist, D.S.M., Lee, C.I., Nikulin, Y., Ribli, D., Guan, Y., et al. (2020) Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Network Open, 3, e200265.
https://doi.org/10.1001/jamanetworkopen.2020.0265
[11]  Bahl, M., Barzilay, R., Yedidia, A.B., Locascio, N.J., Yu, L. and Lehman, C.D. (2018) High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision. Radiology, 286, 810-818.
https://doi.org/10.1148/radiol.2017170549
[12]  Dembrower, K., Wåhlin, E., Liu, Y., Salim, M., Smith, K., Lindholm, P., et al. (2020) Effect of Artificial Intelligence-Based Triaging of Breast Cancer Screening Mammograms on Cancer Detection and Radiologist Workload: A Retrospective Simulation Study. The Lancet Digital Health, 2, e468-e474.
https://doi.org/10.1016/s2589-7500(20)30185-0
[13]  National Health Service (NHS): NHS Long Term Plan: Cancer.
https://www.longtermplan.nhs.uk/areas-of-work/cancer/
[14]  Ardila, D., Kiraly, A.P., Bharadwaj, S., Choi, B., Reicher, J.J., Peng, L., et al. (2019) End-to-End Lung Cancer Screening with Three-Dimensional Deep Learning on Low-Dose Chest Computed Tomography. Nature Medicine, 25, 954-961.
https://doi.org/10.1038/s41591-019-0447-x
[15]  Baldwin, D.R., Gustafson, J., Pickup, L., Arteta, C., Novotny, P., Declerck, J., et al. (2020) External Validation of a Convolutional Neural Network Artificial Intelligence Tool to Predict Malignancy in Pulmonary Nodules. Thorax, 75, 306-312.
https://doi.org/10.1136/thoraxjnl-2019-214104
[16]  Christe, A., Peters, A., Drakopoulos, D., Heverhagen, J.T., Geiger, A., Bartholet, C., Woller, S., Kraemer, A. and Poellinger, A. (2020) Computer-Aided Diagnosis of Pulmonary Nodules in Chest CT: Effect of Nodule Characteristics on Detection Performance. European Radiology, 30, 369-383.
[17]  Farjah, F., Halgrim, S., Buist, D.S.M., Gould, M.K., Zeliadt, S.B., Loggers, E.T., et al. (2016) An Automated Method for Identifying Individuals with a Lung Nodule Can Be Feasibly Implemented across Health Systems. eGEMs (Generating Evidence & Methods to Improve Patient Outcomes), 4, 15.
https://doi.org/10.13063/2327-9214.1254
[18]  Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. (2017) Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature, 542, 115-118.
https://doi.org/10.1038/nature21056
[19]  Nam, J.G., Park, S., Hwang, E.J., Lee, J.H., Jin, K.N., Lim, K.Y., Vu, T.H., Sohn, J.H., Hwang, S., Goo, J.M., et al. (2019) Development and Validation of a Deep Learning Model for Screening Pneumonia on Chest Radiograph. Radiology, 292, 211-220.
[20]  Baldwin, D.R., Breathnach, O., Clifton, J., Chavaditiklu, M., Gleeson, F. and Jenkins, D. (2021) The Impact of Artificial Intelligence on Improving the Evidence-Based Use of Imaging: An Expert Opinion. British Journal of Radiology, 94, Article ID: 20210536.
[21]  Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S., et al. (2020) Sex and Gender Differences and Biases in Artificial Intelligence for Biomedicine and Healthcare. npj Digital Medicine, 3, Article No. 81.
https://doi.org/10.1038/s41746-020-0288-5
[22]  Morley, J., Machado, C.C.V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., et al. (2020) The Ethics of AI in Health Care: A Mapping Review. Social Science & Medicine, 260, Article ID: 113172.
https://doi.org/10.1016/j.socscimed.2020.113172
[23]  Hindocha, S. and Badea, C. (2021) Moral Exemplars for the Virtuous Machine: The Clinician’s Role in Ethical Artificial Intelligence for Healthcare. AI and Ethics, 2, 167-175.
https://doi.org/10.1007/s43681-021-00089-6
[24]  Anderson, M., O’Neill, C., Macleod Clark, J., Street, A., Woods, M., Johnston-Webber, C., et al. (2021) Securing a Sustainable and Fit-for-Purpose UK Health and Care Workforce. The Lancet, 397, 1992-2011.
https://doi.org/10.1016/s0140-6736(21)00231-2
[25]  National Health Service (NHS): Digital Transformation of Screening-NHSX.
https://www.nhsx.nhs.uk/key-tools-and-info/digital-transformation-of-screening/
[26]  Shaheen, N.J., Falk, G.W., Iyer, P.G. and Gerson, L.B. (2016) ACG Clinical Guideline: Diagnosis and Management of Barrett’s Esophagus. American Journal of Gastroenterology, 111, 30-50.
https://doi.org/10.1038/ajg.2015.322
[27]  World Health Organization (WHO) (2021) Ethics and Governance of Artificial Intelligence for Health: WHO Guidance. 1-148.
[28]  Moore, C.R., Farrag, A. and Ashkin, E. (2017) Using Natural Language Processing to Extract Abnormal Results from Cancer Screening Reports. Journal of Patient Safety, 13, 138-143.
https://doi.org/10.1097/pts.0000000000000127
[29]  Nayor, J., Borges, L.F., Goryachev, S., Gainer, V.S. and Saltzman, J.R. (2018) Natural Language Processing Accurately Calculates Adenoma and Sessile Serrated Polyp Detection Rates. Digestive Diseases and Sciences, 63, 1794-1800.
https://doi.org/10.1007/s10620-018-5078-4
[30]  Glaser, A.P., Jordan, B.J., Cohen, J., Desai, A., Silberman, P. and Meeks, J.J. (2018) Automated Extraction of Grade, Stage, and Quality Information from Transurethral Resection of Bladder Tumor Pathology Reports Using Natural Language Processing. JCO Clinical Cancer Informatics, 2, 1-8.
https://doi.org/10.1200/cci.17.00128

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133