全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Listing Prime Numbers Periodically

DOI: 10.4236/apm.2025.154012, PP. 247-268

Keywords: Prime Listing, Factor-Pair Table, Mapping Effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over millennia, people have considered prime numbers as unpredictable and hard to list. This study confirms that all positive integers without factors of 2, 3, 5 and 7 can be regarded as the offspring of 48 roots in the interval [11, 220]. These roots are to generate a Factor-Pair Table composed of 48 columns, each of which forms a basic binary matrix to indicate the locations of composite numbers. For a given interval, these composites are removed via mapping effect. After primality checking of the rest of the numbers, we identify all primes within the interval. We then form a Formula of Primes for prime prediction. Moreover, the Periodic Table of Primes (PTP) [1] is reconstructed based on the proposed algorithm to illustrate the distribution of primes and composites.

References

[1]  Li, H., Fang, S. and Kuo, W. (2024) The Periodic Table of Primes. Advances in Pure Mathematics, 14, 394-419.
https://doi.org/10.4236/apm.2024.145023
[2]  Bach, E. and Shallit, J. (1996) Algorithmic Number Theory. MIT Press.
[3]  O’Neill, M.E. (2009) The Genuine Sieve of Eratosthenes. Journal of Functional Programming, 19, 95-106.
https://doi.org/10.1017/s0956796808007004
[4]  Dijkstra, E.W. (1972) Notes on Structured Programming. In: Dijkstra, E.W., Dahl, O.J. and Hoare, C.A.R., Eds., Structured Programming, Academic Press Ltd., 1-82.
[5]  Atkin, A.O.L. and Bernstein, D.J. (2003) Prime Sieves Using Binary Quadratic Forms. Mathematics of Computation, 73, 1023-1030.
https://doi.org/10.1090/s0025-5718-03-01501-1
[6]  Pritchard, P. (1983) Fast Compact Prime Number Sieves (among Others). Journal of Algorithms, 4, 332-344.
https://doi.org/10.1016/0196-6774(83)90014-7
[7]  Helfgott, H.A. (2019) An Improved Sieve of Eratosthenes. Mathematics of Computation, 89, 333-350.
https://doi.org/10.1090/mcom/3438
[8]  Pritchard, P. (1982) Explaining the Wheel Sieve. Acta Informatica, 17, 477-485.
https://doi.org/10.1007/bf00264164
[9]  Agrawal, M., Kayal, N. and Saxena, N. (2004) PRIMES Is in P. Annals of Mathematics, 160, 781-793.
https://doi.org/10.4007/annals.2004.160.781
[10]  Miller, G.L. (1975) Riemann’s Hypothesis and Tests for Primality. Proceedings of Seventh Annual ACM Symposium on Theory of Computing, Albuquerque, 5-7 May 1975, 234-239.
https://doi.org/10.1145/800116.803773
[11]  Rabin, M.O. (1980) Probabilistic Algorithm for Testing Primality. Journal of Number Theory, 12, 128-138.
https://doi.org/10.1016/0022-314x(80)90084-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133