Evaluation of Plasmodial Species in Humans and in Malaria Vectors in the Central Arrondissement of Abomey-Calavi and in the Health Zone of Cotonou I and IV in Benin, West Africa
Background: Malaria remains a recurrent public health disease. Several plasmodial species are vigorously implicated in malaria infection. The aim of this study is to assess the risk of exposure to malaria in the populations of southern Benin, more specifically in the central arrondissement of Abomey-calavi and in the Cotonou I and IV health zones, by identifying the plasmodial species responsible for malaria. Method: Mosquito collections were carried out in July 2021 following nocturnal captures of mosquitoes from volunteer subjects and intradomiciliary spraying at dawn on the days following the capture nights. At the same time, thick drop-positive blood samples were collected from tributary healthcare facilities per work zone. The species of mosquitoes collected were identified on the basis of their morphological characteristics, and P.falciparum (Pf) CSP antigens were screened for in Anopheles using the enzyme-linked immunosorbent assay (ELISA) technique. PCRs were performed to detect Plasmodium infection in anopheles, with characterization of the anopheles species involved and identification of the plasmodial species involved. The XN 31 automated system was used to identify plasmodial species in blood samples. Results: A total of 112 female anopheles were collected in Abomey-calavi and 264 in Cotonou. The An.gambiaesl complex was the predominant anopheles species, accounting for 20.1% in Abomey-calavi and 15.5% in Cotonou. An.pharoensis is found with a low percentage in Abomey-calavi (0.2%). Following molecular characterization of the An. gambiaesl complex, An.coluzzii was the predominant species in Cotonou (82.2%), in contrast to Abomey-calavi where An.gambiae was in the majority (82.1%). The sporozoites infection rate and entomological inoculation rate were 4.5% and 0.3 bi/h/night or 125 bi/h/year respectively in Abomey-calavi, and 0.75% and 0.12 bi/h/night or 43.8 bi/h/year in Cotonou. Of these anopheles obtained in Abomey-calavi, 17 were carriers of P.falciparum (Pf), 02 of Plasmodiumvivax (Pv) and 01 of P.malariae (Pm). In Cotonou, 07 were carriers of P.falciparum and 03 of Plasmodiumvivax. In the same period, 118 blood samples were collected in Abomey-calavi and 183 in Cotonou. After analysis, Pf, Po and P.malariae (Pm) were found singly or mixed in the blood samples collected and we have the next
References
[1]
OMS (2019) World Malaria Report 2019. WHO Regional Office for Africa, 185. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2019
[2]
WHO (2020) World Malaria Report: 20 Years of Global Progress and Challenges. World Health Organization. https://www.who.int/publications/i/item/9789240015791
[3]
WHO (2022) World Malaria Report 2022. World Health Organization, 2013-2015. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
[4]
Carnevale Pierre, M.S. (2012) Lutte contre les vecteurs et autres arthropodes nuisants. In: Gentilini, M., Caumes, E., Danis, M., Richard-Lenoble, D., Bégué, P., Touze, J.E., Kerouédan, D., Eds., Médecinetropicale: 6ème édition. Lavoisier/Médecine Sciences, Paris, 1146-1183. https://www.documentation.ird.fr/hor/fdi:010059744
[5]
Wells, T.N.C., Burrows, J.N. and Baird, J.K. (2010) Targeting the Hypnozoite Reservoir of Plasmodium vivax: The Hidden Obstacle to Malaria Elimination. Trends in Parasitology, 26, 145-151. https://doi.org/10.1016/j.pt.2009.12.005
[6]
Cox-Singh, J. and Singh, B. (2008) Knowlesi Malaria: Newly Emergent and of Public Health Importance? Trends in Parasitology, 24, 406-410. https://doi.org/10.1016/j.pt.2008.06.001
[7]
Yap, N.J., Hossain, H., Nada-Raja, T., Ngui, R., Muslim, A., Hoh, B., et al. (2021) Natural Human Infections with Plasmodium cynomolgi, p. Inui, and 4 Other Simian Malaria Parasites, Malaysia. Emerging Infectious Diseases, 27, 2187-2191. https://doi.org/10.3201/eid2708.204502
[8]
Ossè, R.A., Tokponnon, F., Padonou, G.G., Sidick, A., Aïkpon, R., Fassinou, A., et al. (2019) Involvement of Anopheles nili in Plasmodium falciparum Transmission in North Benin. Malaria Journal, 18, Article No. 152. https://doi.org/10.1186/s12936-019-2792-0
[9]
Damien, G.B., Djènontin, A., Rogier, C., Corbel, V., Bangana, S.B., Chandre, F., et al. (2010) Malaria Infection and Disease in an Area with Pyrethroid-Resistant Vectors in Southern Benin. Malaria Journal, 9, Article No. 380. https://doi.org/10.1186/1475-2875-9-380
[10]
Poirier, P., Doderer-Lang, C., Atchade, P.S., Lemoine, J., de l’Isle, M.C., Abou-bacar, A., et al. (2016) The Hide and Seek of Plasmodium vivax in West Africa: Report from a Large-Scale Study in Beninese Asymptomatic Subjects. Malaria Journal, 15, Article No. 570. https://doi.org/10.1186/s12936-016-1620-z
[11]
Ossè, R.A., Tokponnon, F., Padonou, G.G., Glitho, M.E., Sidick, A., Fassinou, A., et al. (2023) Evidence of Transmission of Plasmodium vivax 210 and Plasmodium vivax 247 by Anopheles gambiae and An. coluzzii, Major Malaria Vectors in Benin/West Africa. Insects, 14, Article 231. https://doi.org/10.3390/insects14030231
[12]
Pages, F., Orlandi-Pradines, E. and Corbel, V. (2007) Vecteurs du paludisme: biologie, diversité, contrôle et protection individuelle. Médecine et maladies infectieuses, 37, 153-161. https://www.em-consulte.com/article/60272/vecteurs-du-paludisme-biologie-diversite-controle-
[13]
Service, M.W. (1977) A Critical Review of Procedures for Sampling Populations of Adult Mosquitoes. Bulletin of Entomological Research, 67, 343-382. https://doi.org/10.1017/s0007485300011184
[14]
World Health Organization (2013) Malaria Entomology and Vector Control. https://iris.who.int/handle/10665/85890
[15]
Degefa, T., Githeko, A.K., Lee, M., Yan, G. and Yewhalaw, D. (2021) Patterns of Human Exposure to Early Evening and Outdoor Biting Mosquitoes and Residual Malaria Transmission in Ethiopia. Acta Tropica, 216, Article ID: 105837. https://doi.org/10.1016/j.actatropica.2021.105837
[16]
WHO (1975) Manual on Practical Entomology in Malariа. 191. https://apps.who.int/iris/bitstream/handle/10665/42481/WHO_OFFSET_13_(part2).pdf
[17]
Coetzee, M. (2020) Key to the Females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malaria Journal, 19, Article No. 70. https://doi.org/10.1186/s12936-020-3144-9
[18]
Coetzee, M., Craig, M. and le Sueur, D. (2000) Distribution of African Malaria Mosquitoes Belonging to the Anopheles gambiae Complex. Parasitology Today, 16, 74-77. https://doi.org/10.1016/s0169-4758(99)01563-x
[19]
Getaneh, A., Yimer, M., Alemu, M., Dejazmach, Z., Alehegn, M. and Tegegne, B. (2021) Species Composition, Parous Rate, and Infection Rate of Anopheles mosquitoes (Diptera: Culicidae) in Bahir Dar City Administration, Northwest Ethiopia. Journal of Medical Entomology, 58, 1874-1879. https://doi.org/10.1093/jme/tjab034
[20]
Assouho, K.F., Adja, A.M., Guindo-Coulibaly, N., Tia, E., Kouadio, A.M.N., Zoh, D.D., et al. (2019) Vectorial Transmission of Malaria in Major Districts of Côte D’ivoire. Journal of Medical Entomology, 57, 908-914. https://doi.org/10.1093/jme/tjz207
[21]
Burkot, T.R., Williams, J.L. and Schneider, I. (1984) Identification of Plasmodium falciparum-Infected Mosquitoes by a Double Antibody Enzyme-Linked Immunosorbent Assay. The American Journal of Tropical Medicine and Hygiene, 33, 783-788. https://doi.org/10.4269/ajtmh.1984.33.783
[22]
Wirtz, R.A., Zavala, F., Charoenvit, Y., Campbell, G.H., Burkot, T.R., Schneider, I., et al. (1987) Comparative Testing of Monoclonal Antibodies against Plasmodium falciparum Sporozoites for ELISA Development. Bulletin of the World Health Organization, 65, 39-45. https://pmc.ncbi.nlm.nih.gov/articles/PMC2490858/
[23]
Santolamazza, F., Mancini, E., Simard, F., Qi, Y., Tu, Z. and della Torre, A. (2008) Insertion Polymorphisms of SINE200 Retrotransposons within Speciation Islands of Anopheles gambiae Molecular Forms. Malaria Journal, 7, Article No. 163. https://doi.org/10.1186/1475-2875-7-163
[24]
Padley, D., Moody, A.H., Chiodini, P.L. and Saldanha, J. (2003) Use of a Rapid, Single-Round, Multiplex PCR to Detect Malarial Parasites and Identify the Species Present. Annals of Tropical Medicine & Parasitology, 97, 131-137. https://doi.org/10.1179/000349803125002977
[25]
Gallerand, M. (2014) Guide méthodologique. Réhabilitation des sites industriels contaminés radiologiquement: quels objectifs? https://doi.org/10.1051/jtsfen/2014reh03
[26]
Komaki-Yasuda, K., Kutsuna, S., Kawaguchi, M., Kamei, M., Uchihashi, K., Nakamura, K., et al. (2022) Clinical Performance Testing of the Automated Haematology Analyzer XN-31 Prototype Using Whole Blood Samples from Patients with Imported Malaria in Japan. Malaria Journal, 21, Article No. 229. https://doi.org/10.1186/s12936-022-04247-x
[27]
Boko, M.P. (2022) Evaluation de la transmission du paludisme dans la zone residentielle de zogbadje dans la commune de abomey-calavi. Mémoire de Licence Ecole Polytechnique d’Abomey-Calavi, P. 53.
[28]
Tokponnon, T.F., Ossè, R., Padonou, G.G., Affoukou, C.D., Sidick, A., Sewade, W., et al. (2023) Entomological Characteristics of Malaria Transmission across Benin: An Essential Element for Improved Deployment of Vector Control Interventions. Insects, 14, Article 52. https://doi.org/10.3390/insects14010052
[29]
Aikpon, R., Missihoun, A., Lokossou, A., Aikpon, G., Salifou, S., Dansi, A., et al. (2020) Hétérogénéité génétique et résistance des vecteurs du paludisme (Anopheles gambiae s.l) aux insecticides en zone cotonnière au Benin. International Journal of Biological and Chemical Sciences, 14, 2724-2736. https://doi.org/10.4314/ijbcs.v14i8.6