全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Laplacian Permanents and Laplacian Ratios of Trees

DOI: 10.4236/am.2025.164017, PP. 338-346

Keywords: Laplacian Permanents, Laplacian Ratio, Tree, Caterpillar

Full-Text   Cite this paper   Add to My Lib

Abstract:

Brualdi and Goldwasser characterized the Laplacian permanents of trees. In this paper, we study the Laplacian permanents of trees. We characterize some Laplacian permanents of trees. The Laplacian ratio of G is the Laplacian permanent of G divided by the product of degrees of all vertices. In this paper, we obtain that for any n -vertex caterpillar tree T , there exists an n -vertex caterpillar tree C n such that π( C n )π( T ) .

References

[1]  Valiant, L.G. (1979) The Complexity of Computing the Permanent. Theoretical Computer Science, 8, 189-201.
https://doi.org/10.1016/0304-3975(79)90044-6
[2]  Cvetkovic, D. (2005) Signless Laplacians and Line Graphs. Bulletin: Classe des sciences mathematiques et natturalles, 131, 85-92.
https://doi.org/10.2298/bmat0530085c
[3]  Cvetković, D., Rowlinson, P. and Simić, S.K. (2007) Signless Laplacians of Finite Graphs. Linear Algebra and its Applications, 423, 155-171.
https://doi.org/10.1016/j.laa.2007.01.009
[4]  Cvetković, D., Doob, M. and Sachs, H. (1980) Spectra of Graphs. Johann Ambrosius Barth Verlag.
[5]  Haemers, W.H. and Spence, E. (2004) Enumeration of Cospectral Graphs. European Journal of Combinatorics, 25, 199-211.
https://doi.org/10.1016/s0195-6698(03)00100-8
[6]  Cash, G.G. and Gutman, I. (1990) The Laplacian Permanental Polynomial: Formulas and Algorithms. MATCH Communications in Mathematical and in Computer Chemistry, 51, 129-136.
[7]  Liu, S. (2019) On the (Signless) Laplacian Permanental Polynomials of Graphs. Graph Combine, 35, 787-803.
[8]  Brualdi, R.A. and Goldwasser, J.L. (1984) Permanent of the Laplacian Matrix of Trees and Bipartite Graphs. Discrete Mathematics, 48, 1-21.
https://doi.org/10.1016/0012-365x(84)90127-4
[9]  Goldwasser, J.L. (1986) Permanent of the Laplacian Matrix of Trees with a Given Matching. Discrete Mathematics, 61, 197-212.
https://doi.org/10.1016/0012-365x(86)90091-9
[10]  Cvetkovic, D., Rowlinson, P. and Simic, S. (2004) Spectral Generalizations of Line Graphs. Cambridge University Press.
https://doi.org/10.1017/cbo9780511751752
[11]  West, D.B. (2001) Introduction to Graph Theory. Prentice Hall.
[12]  Geng, X., Hu, X. and Li, S. (2010) Further Results on Permanental Bounds for the Laplacian Matrix of Trees. Linear and Multilinear Algebra, 58, 571-587.
https://doi.org/10.1080/03081080902765583
[13]  Geng, X., Hu, S. and Li, S. (2014) Permanental Bounds of the Laplacian Matrix of Trees with Given Domination Number. Graphs and Combinatorics, 31, 1423-1436.
https://doi.org/10.1007/s00373-014-1451-z
[14]  Li, S. and Zhang, L. (2011) Permanental Bounds for the Signless Laplacian Matrix of a Unicyclic Graph with Diameter D. Graphs and Combinatorics, 28, 531-546.
https://doi.org/10.1007/s00373-011-1057-7
[15]  Li, S. and Zhang, L. (2011) Permanental Bounds for the Signless Laplacian Matrix of Bipartite Graphs and Unicyclic Graphs. Linear and Multilinear Algebra, 59, 145-158.
https://doi.org/10.1080/03081080903261467
[16]  Li, S., Li, Y. and Zhang, X. (2013) Edge-Grafting Theorems on Permanents of Laplacian Matrices of Graphs and Their Applications. The Electronic Journal of Linear Algebra, 26, 28-48.
https://doi.org/10.13001/1081-3810.1637

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133