Brualdi and Goldwasser characterized the Laplacian permanents of trees. In this paper, we study the Laplacian permanents of trees. We characterize some Laplacian permanents of trees. The Laplacian ratio of
is the Laplacian permanent of
divided by the product of degrees of all vertices. In this paper, we obtain that for any
-vertex caterpillar tree
, there exists an
-vertex caterpillar tree
such that
.
References
[1]
Valiant, L.G. (1979) The Complexity of Computing the Permanent. TheoreticalComputerScience, 8, 189-201. https://doi.org/10.1016/0304-3975(79)90044-6
[2]
Cvetkovic, D. (2005) Signless Laplacians and Line Graphs. Bulletin:Classedessciencesmathematiquesetnatturalles, 131, 85-92. https://doi.org/10.2298/bmat0530085c
[3]
Cvetković, D., Rowlinson, P. and Simić, S.K. (2007) Signless Laplacians of Finite Graphs. LinearAlgebraanditsApplications, 423, 155-171. https://doi.org/10.1016/j.laa.2007.01.009
[4]
Cvetković, D., Doob, M. and Sachs, H. (1980) Spectra of Graphs. Johann Ambrosius Barth Verlag.
[5]
Haemers, W.H. and Spence, E. (2004) Enumeration of Cospectral Graphs. EuropeanJournalofCombinatorics, 25, 199-211. https://doi.org/10.1016/s0195-6698(03)00100-8
[6]
Cash, G.G. and Gutman, I. (1990) The Laplacian Permanental Polynomial: Formulas and Algorithms. MATCH Communications in Mathematical and in Computer Chemistry, 51, 129-136.
[7]
Liu, S. (2019) On the (Signless) Laplacian Permanental Polynomials of Graphs. Graph Combine, 35, 787-803.
[8]
Brualdi, R.A. and Goldwasser, J.L. (1984) Permanent of the Laplacian Matrix of Trees and Bipartite Graphs. DiscreteMathematics, 48, 1-21. https://doi.org/10.1016/0012-365x(84)90127-4
[9]
Goldwasser, J.L. (1986) Permanent of the Laplacian Matrix of Trees with a Given Matching. DiscreteMathematics, 61, 197-212. https://doi.org/10.1016/0012-365x(86)90091-9
[10]
Cvetkovic, D., Rowlinson, P. and Simic, S. (2004) Spectral Generalizations of Line Graphs. Cambridge University Press. https://doi.org/10.1017/cbo9780511751752
[11]
West, D.B. (2001) Introduction to Graph Theory. Prentice Hall.
[12]
Geng, X., Hu, X. and Li, S. (2010) Further Results on Permanental Bounds for the Laplacian Matrix of Trees. LinearandMultilinearAlgebra, 58, 571-587. https://doi.org/10.1080/03081080902765583
[13]
Geng, X., Hu, S. and Li, S. (2014) Permanental Bounds of the Laplacian Matrix of Trees with Given Domination Number. GraphsandCombinatorics, 31, 1423-1436. https://doi.org/10.1007/s00373-014-1451-z
[14]
Li, S. and Zhang, L. (2011) Permanental Bounds for the Signless Laplacian Matrix of a Unicyclic Graph with Diameter D. GraphsandCombinatorics, 28, 531-546. https://doi.org/10.1007/s00373-011-1057-7
[15]
Li, S. and Zhang, L. (2011) Permanental Bounds for the Signless Laplacian Matrix of Bipartite Graphs and Unicyclic Graphs. LinearandMultilinearAlgebra, 59, 145-158. https://doi.org/10.1080/03081080903261467
[16]
Li, S., Li, Y. and Zhang, X. (2013) Edge-Grafting Theorems on Permanents of Laplacian Matrices of Graphs and Their Applications. TheElectronicJournalofLinearAlgebra, 26, 28-48. https://doi.org/10.13001/1081-3810.1637