全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Evolution of the Universe Based on Principal Bundle Geometry

DOI: 10.4236/jmp.2025.164028, PP. 536-554

Keywords: Generalized Gauge Transformation, Dark Matter, Dark Energy, Einstein Equation, Universal Evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes a novel geometric framework for unifying dark matter, dark energy, and cosmic evolution through a modified gauge-theoretic approach. By introducing a scalar function γ( x )=tanh( kx ) , where x= a a 0 (with a as the local “absolute acceleration” and a 0 10 8 cm/s2 a reference scale), we construct an extended principal bundle P =P× and redefine the connection form as ω = ω G +dγ , ensuring curvature invariance while modulating gravitational sources. In the Newtonian limit, the field equation simplifies to γ 2 =4πρ , revealing γ ’s role in scaling gravitational effects. Distinctively, dark matter and dark energy emerge as geometric consequences of spacetime curvature rather than exotic components: γ1 restores standard gravity at small scales, 0<γ<1 enhances gravity (mimicking dark matter)

References

[1]  Einstein, A. (1916) Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354, 769-822.
https://doi.org/10.1002/andp.19163540702
[2]  Rubin, V.C., Thonnard, N. and Ford, W.K.J. (1978) Extended Rotation Curves of High-Luminosity Spiral Galaxies. IV—Systematic Dynamical Properties, Sa through Sc. The Astrophysical Journal, 225, L107.
https://doi.org/10.1086/182804
[3]  Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038.
https://doi.org/10.1086/300499
[4]  Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559-606.
https://doi.org/10.1103/revmodphys.75.559
[5]  Milgrom, M. (1983) A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis. The Astrophysical Journal, 270, 365-370.
https://doi.org/10.1086/161130
[6]  Nakahara, M. (2003) Geometry, Topology and Physics. 2nd Edition, IOP Publishing.
https://iopscience.iop.org/book/978-0-7503-0606-5
[7]  Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W. H. Freeman and Company.
https://www.worldcat.org/title/gravitation/oclc/599747
[8]  Bekenstein, J.D. (2004) Relativistic Gravitation Theory for the Modified Newtonian Dynamics Paradigm. Physical Review D, 70, Article 083509.
https://doi.org/10.1103/physrevd.70.083509
[9]  Milgrom, M. (2015). The MOND Paradigm: A Critical Review of Observational Tests and Theoretical Developments. Physics Reports, 596, 1-37
https://doi.org/10.1016/j.physrep.2015.08.003
[10]  Bi, Q. (2023) Large Scale Fundamental Interactions in the Universe. Journal of Modern Physics, 14, 1703-1720.
https://doi.org/10.4236/jmp.2023.1413100
[11]  Bi, Q. (2024) The Gravitational Constant as the Function of the Cosmic Scale. Journal of Modern Physics, 15, 1745-1759.
https://doi.org/10.4236/jmp.2024.1511078
[12]  Qiao, B. (2023) An Outline of the Grand Unified Theory of Gauge Fields. Journal of Modern Physics, 14, 212-326.
https://doi.org/10.4236/jmp.2023.143016
[13]  Qiao, B. (2023) The Significance of Generalized Gauge Transformation across Fundamental Interactions. Journal of Modern Physics, 14, 604-622.
https://doi.org/10.4236/jmp.2023.145035
[14]  Qiao, B. (2024) Further Exploration of the Gauge Transformation across Fundamental Interactions. Journal of Modern Physics, 15, 2317-2334.
https://doi.org/10.4236/jmp.2024.1513094
[15]  Milgrom, M. (2009) Bimetric MOND Gravity. Physical Review D, 80, Article 123536.
https://doi.org/10.1103/physrevd.80.123536
[16]  McGaugh, S.S. (2020) A Review on the MOND Paradigm in Galaxy Dynamics and Beyond. The Astronomy and Astrophysics Review, 28, Article No. 8.
[17]  Sahni, V. and Starobinsky, A. (2000) The Case for a Positive Cosmological Λ-Term. International Journal of Modern Physics D, 9, 373-443.
https://doi.org/10.1142/s0218271800000542
[18]  Bekenstein, J. and Magueijo, J. (2006) Modified Newtonian Dynamics Habitats within the Solar System. Physical Review D, 73, Article 103513.
https://doi.org/10.1103/physrevd.73.103513
[19]  Chamberland, C. and Campbell, E.T. (2022) Cyclic Cosmology from a Non-Singular Bounce in Modified Gravity.
[20]  Frankel, T. (2012) The Geometry of Physics: An Introduction. 3rd Edition, Cambridge University Press.
[21]  Lian, C.B. and Zhou, B. (2019) Introduction to Differential Geometry and General Relativity. 2nd Edition, Science Press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133