全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

FIBCD1通过识别几丁质介导宿主相关生物学功能的研究进展
Research Progress of FIBCD1 Mediated Host-Related Biological Functions by Recognizing Chitin

DOI: 10.12677/jcpm.2025.42266, PP. 972-980

Keywords: FIBCD1,模式识别受体,几丁质,病原相关分子模式,免疫炎症反应
FIBCD1
, Pattern-Recognition Receptor, Chitin, Pathogen Associated Molecular Pattern, Immune Inflammatory Response

Full-Text   Cite this paper   Add to My Lib

Abstract:

纤维蛋白原C结构域1 (Fibrinogen C Domain Containing 1, FIBCD1)属于纤维蛋白原超家族中的成员,作为一种新发现的胞膜模式识别受体,通过受体与配体的结合方式,与病原相关分子模式识别后激活细胞信号级联反应,参与宿主对多种病原体的免疫炎症反应,尤其在与几丁质及其衍生物之间的相互作用日益受到关注。FIBCD1识别和结合几丁质及其衍生物后通过维护组织物理屏障、维持宿主微生物群平衡、活化吞噬细胞、调控免疫炎症反应等多种生物学功能,提高宿主抵抗病原微生物入侵的能力。本篇通过介绍FIBCD1的分子结构与功能、几丁质生物学特性以及FIBCD1与几丁质相互识别后介导的相关生物学功能展开综述,以期未来能够为相关疾病的发生与进展提供新的理论依据及可能的治疗靶点。
Fibrinogen C Domain Containing 1 (FIBCD1), a member of the fibrinogen superfamily, is a newly discovered membrane pattern-recognition receptor. By binding to ligands through receptor-ligand interactions, FIBCD1 recognizes pathogen-associated molecular patterns (PAMPs), triggering cellular signaling cascades and participating in the immune-inflammatory response of the host against various pathogens. The interaction between FIBCD1 and chitin and its derivatives has attracted increasing attention. After recognizing and binding to chitin and its derivatives, FIBCD1 exerts multiple biological functions, including maintaining physical tissue barriers, sustaining host microbiota balance, activating phagocytes, and regulating immune-inflammatory responses, thereby enhancing the host’s ability to resist pathogenic microbial invasion. This review introduces the molecular structure and function of FIBCD1, the biological properties of chitin, and the biological functions mediated by FIBCD1’s recognition of chitin and its derivatives. It aims to provide a theoretical basis and potential therapeutic targets for the occurrence and progression of related diseases in the future.

References

[1]  Schlosser, A., Thomsen, T., Moeller, J.B., Nielsen, O., Tornøe, I., Mollenhauer, J., et al. (2009) Characterization of FIBCD1 as an Acetyl Group-Binding Receptor That Binds Chitin. The Journal of Immunology, 183, 3800-3809.
https://doi.org/10.4049/jimmunol.0901526
[2]  Trudeau, E.D. and Berbee, M.L. (2024) When Plants and Animals First Met Fungi: Insights from the Evolution of Host Immune Systems. In: Hsueh, Y.P. and Blackwell, M., Eds., Fungal Associations, Springer International Publishing, 1-32.
https://doi.org/10.1007/978-3-031-41648-4_1
[3]  Williams, H.M., Moeller, J.B., Burns, I., Schlosser, A., Sorensen, G.L., Greenhough, T.J., et al. (2024) Crystal Structures of Human Immune Protein FIBCD1 Suggest an Extended Binding Site Compatible with Recognition of Pathogen-Associated Carbohydrate Motifs. Journal of Biological Chemistry, 300, Article ID: 105552.
https://doi.org/10.1016/j.jbc.2023.105552
[4]  Jepsen, C.S., Dubey, L.K., Colmorten, K.B., Moeller, J.B., Hammond, M.A., Nielsen, O., et al. (2018) FIBCD1 Binds Aspergillus Fumigatus and Regulates Lung Epithelial Response to Cell Wall Components. Frontiers in Immunology, 9, Article No. 1967.
https://doi.org/10.3389/fimmu.2018.01967
[5]  Saki, N., Hadi, H., Keikhaei, B., Mirzaei, A. and Purrahman, D. (2024) Gut Microbiome Composition and Dysbiosis in Immune Thrombocytopenia: A Review of Literature. Blood Reviews, 67, Article ID: 101219.
https://doi.org/10.1016/j.blre.2024.101219
[6]  Wu, L., Liu, Y., Yang, J. and Piao, Y. (2024). A Prognostic Model Based on Five Characteristic Genes to Predict the Prognosis of Patients with Hepatocellular Carcinoma. 2024 IEEE 9th International Conference on Data Science in Cyberspace (DSC), Jinan, 23-26 August 2024, 762-769.
https://doi.org/10.1109/dsc63484.2024.00114
[7]  Gutierrez, M.W. and Arrieta, M. (2021) The Intestinal Mycobiome as a Determinant of Host Immune and Metabolic Health. Current Opinion in Microbiology, 62, 8-13.
https://doi.org/10.1016/j.mib.2021.04.004
[8]  Fell, C.W., Hagelkruys, A., Cicvaric, A., Horrer, M., Liu, L., Li, J.S.S., et al. (2022) FIBCD1 Is an Endocytic GAG Receptor Associated with a Novel Neurodevelopmental Disorder. EMBO Molecular Medicine, 14, e15829.
https://doi.org/10.15252/emmm.202215829
[9]  Bhattacharya, S., Amarsaikhan, N., Maupin, A.J., Schlosser, A., Füchtbauer, E., Holmskov, U., et al. (2021) FIBCD1 Deficiency Decreases Disease Severity in a Murine Model of Invasive Pulmonary Aspergillosis. ImmunoHorizons, 5, 983-993.
https://doi.org/10.4049/immunohorizons.2100092
[10]  Moeller, J.B., Leonardi, I., Schlosser, A., Flamar, A., Bessman, N.J., Putzel, G.G., et al. (2019) Modulation of the Fungal Mycobiome Is Regulated by the Chitin-Binding Receptor FIBCD1. Journal of Experimental Medicine, 216, 2689-2700.
https://doi.org/10.1084/jem.20182244
[11]  Shrive, A.K., Moeller, J.B., Burns, I., Paterson, J.M., Shaw, A.J., Schlosser, A., et al. (2014) Crystal Structure of the Tetrameric Fibrinogen-Like Recognition Domain of Fibrinogen C Domain Containing 1 (FIBCD1) Protein. Journal of Biological Chemistry, 289, 2880-2887.
https://doi.org/10.1074/jbc.m113.520577
[12]  Thomsen, T., Moeller, J.B., Schlosser, A., Sorensen, G.L., Moestrup, S.K., Palaniyar, N., et al. (2010) The Recognition Unit of FIBCD1 Organizes into a Noncovalently Linked Tetrameric Structure and Uses a Hydrophobic Funnel (S1) for Acetyl Group Recognition. Journal of Biological Chemistry, 285, 1229-1238.
https://doi.org/10.1074/jbc.m109.061523
[13]  Yu, A., Beck, M., Merzendorfer, H. and Yang, Q. (2024) Advances in Understanding Insect Chitin Biosynthesis. Insect Biochemistry and Molecular Biology, 164, Article ID: 104058.
https://doi.org/10.1016/j.ibmb.2023.104058
[14]  Edo, G.I., Mafe, A.N., Ali, A.B.M., Akpoghelie, P.O., Yousif, E., Apameio, J.I., et al. (2025) Chitosan and Its Derivatives: A Novel Approach to Gut Microbiota Modulation and Immune System Enhancement. International Journal of Biological Macromolecules, 289, Article ID: 138633.
https://doi.org/10.1016/j.ijbiomac.2024.138633
[15]  庄钰鑫, 刘慧泉, 许铭. 真菌几丁质酶研究进展[J]. 微生物学报, 2024, 64(11): 4022-4035.
[16]  Larrañaga, A., Bello-Álvarez, C. and Lizundia, E. (2023) Cytotoxicity and Inflammatory Effects of Chitin Nanofibrils Isolated from Fungi. Biomacromolecules, 24, 5737-5748.
https://doi.org/10.1021/acs.biomac.3c00710
[17]  Mu, L., Wu, L., Wu, S., Ye, Q. and Zhong, Z. (2024) Progress in Chitin/Chitosan and Their Derivatives for Biomedical Applications: Where We Stand. Carbohydrate Polymers, 343, Article ID: 122233.
https://doi.org/10.1016/j.carbpol.2024.122233
[18]  Hadebe, S., Brombacher, F. and Brown, G.D. (2018) C-Type Lectin Receptors in Asthma. Frontiers in Immunology, 9, Article No. 733.
https://doi.org/10.3389/fimmu.2018.00733
[19]  Bhattacharya, S., Maupin, A.J., Schlosser, A.G., Füchtbauer, E., Gloria, Y.C., Weber, A.N.R., et al. (2023) The Role of FIBCD1 in Response to Aspergillus Fumigatus in Lung Epithelial Cells. PLOS ONE, 18, e0282347.
https://doi.org/10.1371/journal.pone.0282347
[20]  Da Silva, C.A., Chalouni, C., Williams, A., Hartl, D., Lee, C.G. and Elias, J.A. (2009) Chitin Is a Size-Dependent Regulator of Macrophage TNF and IL-10 Production. The Journal of Immunology, 182, 3573-3582.
https://doi.org/10.4049/jimmunol.0802113
[21]  Wagener, J., Malireddi, R.K.S., Lenardon, M.D., Köberle, M., Vautier, S., MacCallum, D.M., et al. (2014) Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation. PLOS Pathogens, 10, e1004050.
https://doi.org/10.1371/journal.ppat.1004050
[22]  Kumari, N., Maharaj, S., Chattopadhyay, R., Singh, S.K. and Bari, V.K. (2024) Molecular Insights into the Interplay between Host Platelets and Fungal Pathogens. Current Clinical Microbiology Reports, 12, Article No. 1.
https://doi.org/10.1007/s40588-024-00237-6
[23]  Muraosa, Y., Hino, Y., Takatsuka, S., Watanabe, A., Sakaida, E., Saijo, S., et al. (2024) Fungal Chitin-Binding Glycoprotein Induces Dectin-2-Mediated Allergic Airway Inflammation Synergistically with Chitin. PLOS Pathogens, 20, e1011878.
https://doi.org/10.1371/journal.ppat.1011878
[24]  Leroy, J., Bortolus, C., Lecointe, K., Parny, M., Charlet, R., Sendid, B., et al. (2019) Fungal Chitin Reduces Platelet Activation Mediated via TLR8 Stimulation. Frontiers in Cellular and Infection Microbiology, 9, Article No. 383.
https://doi.org/10.3389/fcimb.2019.00383
[25]  Elieh Ali Komi, D., Sharma, L. and Dela Cruz, C.S. (2017) Chitin and Its Effects on Inflammatory and Immune Responses. Clinical Reviews in Allergy & Immunology, 54, 213-223.
https://doi.org/10.1007/s12016-017-8600-0
[26]  Shahgoli, V.K., Dubik, M., Pilecki, B., Skallerup, S., Schmidt, S.G., Detlefsen, S., et al. (2023) Expression of FIBCD1 by Intestinal Epithelial Cells Alleviates Inflammation-Driven Tumorigenesis in a Mouse Model of Colorectal Cancer. Frontiers in Oncology, 13, Article ID: 1280891.
https://doi.org/10.3389/fonc.2023.1280891
[27]  Jensen, K., Lund, K.P., Christensen, K.B., Holm, A.T., Dubey, L.K., Moeller, J.B., et al. (2017) M-Ficolin Is Present in Aspergillus fumigatus Infected Lung and Modulates Epithelial Cell Immune Responses Elicited by Fungal Cell Wall Polysaccharides. Virulence, 8, 1870-1879.
https://doi.org/10.1080/21505594.2016.1278337
[28]  Bueter, C.L., Specht, C.A. and Levitz, S.M. (2013) Innate Sensing of Chitin and Chitosan. PLOS Pathogens, 9, e1003080.
https://doi.org/10.1371/journal.ppat.1003080
[29]  Andersen, M.C.E., Johansen, M.W., Nissen, T., Nexoe, A.B., Madsen, G.I., Sorensen, G.L., et al. (2020) FIBCD1 Ameliorates Weight Loss in Chemotherapy-Induced Murine Mucositis. Supportive Care in Cancer, 29, 2415-2421.
https://doi.org/10.1007/s00520-020-05762-w
[30]  Tong, P.L., Roediger, B., Kolesnikoff, N., Biro, M., Tay, S.S., Jain, R., et al. (2015) The Skin Immune Atlas: Three-Dimensional Analysis of Cutaneous Leukocyte Subsets by Multiphoton Microscopy. Journal of Investigative Dermatology, 135, 84-93.
https://doi.org/10.1038/jid.2014.289
[31]  Dunleavy, K.A., Raffals, L.E. and Camilleri, M. (2023) Intestinal Barrier Dysfunction in Inflammatory Bowel Disease: Underpinning Pathogenesis and Therapeutics. Digestive Diseases and Sciences, 68, 4306-4320.
https://doi.org/10.1007/s10620-023-08122-w
[32]  Jensen, O., Trujillo, E., Hanson, L. and Ost, K.S. (2024) Controlling Candida: Immune Regulation of Commensal Fungi in the Gut. Infection and Immunity, 92, e0051623.
https://doi.org/10.1128/iai.00516-23
[33]  Tang, C., Makusheva, Y., Sun, H., Han, W. and Iwakura, Y. (2019) Myeloid C-Type Lectin Receptors in Skin/Mucoepithelial Diseases and Tumors. Journal of Leukocyte Biology, 106, 903-917.
https://doi.org/10.1002/jlb.2ri0119-031r
[34]  王丽. 固有免疫细胞在宿主抗烟曲霉免疫中的作用[J]. 中华微生物学和免疫学杂志, 2023, 43(6): 413-418.
[35]  Pilecki, B. and Moeller, J.B. (2020) Fungal Recognition by Mammalian Fibrinogen‐Related Proteins. Scandinavian Journal of Immunology, 92, e12925.
https://doi.org/10.1111/sji.12925
[36]  Brown, H.E., Esher, S.K. and Alspaugh, J.A. (2019) Chitin: A “Hidden Figure” in the Fungal Cell Wall. In: Latgé, J.-P., Ed., The Fungal Cell Wall: An Armour and a Weapon for Human Fungal Pathogens, Springer International Publishing, 83-111.
https://doi.org/10.1007/82_2019_184
[37]  Moran, H.B.T., Turley, J.L., Andersson, M. and Lavelle, E.C. (2018) Immunomodulatory Properties of Chitosan Polymers. Biomaterials, 184, 1-9.
https://doi.org/10.1016/j.biomaterials.2018.08.054
[38]  Davis, S., Cirone, A.M., Menzie, J., Russell, F., Dorey, C.K., Shibata, Y., et al. (2018) Phagocytosis-Mediated M1 Activation by Chitin but Not by Chitosan. American Journal of Physiology-Cell Physiology, 315, C62-C72.
https://doi.org/10.1152/ajpcell.00268.2017
[39]  Zuliani-Alvarez, L. and Midwood, K.S. (2015) Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing. Advances in Wound Care, 4, 273-285.
https://doi.org/10.1089/wound.2014.0599
[40]  Barros, B.C.S.C., Almeida, B.R., Barros, D.T.L., Toledo, M.S. and Suzuki, E. (2022) Respiratory Epithelial Cells: More than Just a Physical Barrier to Fungal Infections. Journal of Fungi, 8, Article No. 548.
https://doi.org/10.3390/jof8060548
[41]  Sawada, Y., Setoyama, A., Sakuragi, Y., Saito-Sasaki, N., Yoshioka, H. and Nakamura, M. (2021) The Role of Il-17-Producing Cells in Cutaneous Fungal Infections. International Journal of Molecular Sciences, 22, Article No. 5794.
https://doi.org/10.3390/ijms22115794
[42]  Thomsen, T., Schlosser, A., Holmskov, U. and Sorensen, G.L. (2011) Ficolins and FIBCD1: Soluble and Membrane Bound Pattern Recognition Molecules with Acetyl Group Selectivity. Molecular Immunology, 48, 369-381.
https://doi.org/10.1016/j.molimm.2010.09.019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133