|
纳米硅增强植物对外源胁迫耐受性的研究进展
|
Abstract:
随着人们对粮食产量和品质的需求不断增长,以及农业生产面临土壤盐碱化、病虫害和环境污染等多种外源胁迫的严峻挑战,迫切需要成本效益高、技术方法先进的预防和治理策略。近年来,纳米技术的迅猛发展为农业领域带来了新的治理方法,其中纳米硅因其独特的结构特性和物理化学属性,在农业中的应用日益广泛。为了更深入地理解纳米硅增强植物抵抗各种外源胁迫的机制,本文系统探讨了纳米硅材料在提升植物抗逆性方面的作用,并详细分析了其促进植物生长及增强植物应对生物与非生物胁迫的能力。同时,本文还展望了纳米硅与植物相互作用研究中存在的问题、理论研究的深度以及未来的研究方向,并提出了针对性的建议。这些旨在为农业生产中纳米硅材料的安全高效利用提供实用的参考与指导。
As the demand for food production and quality continues to rise, and agriculture faces severe challenges from various exogenous stresses such as soil salinization, pests and diseases and environmental pollution, there is an urgent need for both high-cost and low-cost technical methods for prevention and control. In recent years, with the rapid advancement of nanotechnology, nanosilicon has been widely applied in agriculture due to its unique structural characteristics and physical and chemical properties. To further elaborate on the various physiological, biochemical, and molecular mechanisms by which nanosilicon enhances plant resistance to exogenous stresses, this paper deeply examines the role of nanosilicon materials in improving plant stress resistance. It analyzes how nanosilicon materials promote plant growth and enhance the ability of plants to face both biotic and abiotic stresses. The paper also looks forward to the existing problems in the study of the interaction between nanosilicon and plants, the depth of theoretical research, and the future research direction. It puts forward targeted suggestions, aiming to provide practical reference and guidance for the safe and efficient utilization of nanosilicon materials in agricultural production.
[1] | Mwobobia, E.G., Sichangi, A.W. and Thiong’o, K.B. (2019) Characterization of Wheat Production Using Earth-Based Observations: A Case Study of Meru County, Kenya. Modeling Earth Systems and Environment, 6, 13-25. https://doi.org/10.1007/s40808-019-00699-4 |
[2] | Rastogi, A., Tripathi, D.K., Yadav, S., Chauhan, D.K., Živčák, M., Ghorbanpour, M., et al. (2019) Application of Silicon Nanoparticles in Agriculture. 3 Biotech, 9, Article No. 90. https://doi.org/10.1007/s13205-019-1626-7 |
[3] | Ma, J.F. and Yamaji, N. (2008) Functions and Transport of Silicon in Plants. Cellular and Molecular Life Sciences, 65, 3049-3057. https://doi.org/10.1007/s00018-008-7580-x |
[4] | El-Shetehy, M., Moradi, A., Maceroni, M., Reinhardt, D., Petri-Fink, A., Rothen-Rutishauser, B., et al. (2020) Silica Nanoparticles Enhance Disease Resistance in Arabidopsis Plants. Nature Nanotechnology, 16, 344-353. https://doi.org/10.1038/s41565-020-00812-0 |
[5] | Zhu, Y. and Gong, H. (2013) Beneficial Effects of Silicon on Salt and Drought Tolerance in Plants. Agronomy for Sustainable Development, 34, 455-472. https://doi.org/10.1007/s13593-013-0194-1 |
[6] | Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Prabu, P., Rajendran, V. and Kannan, N. (2012) Growth and Physiological Responses of Maize (Zea mays L.) to Porous Silica Nanoparticles in Soil. Journal of Nanoparticle Research, 14, Article No. 1294. https://doi.org/10.1007/s11051-012-1294-6 |
[7] | Suriyaprabha, R., Karunakaran, G., Kavitha, K., Yuvakkumar, R., Rajendran, V. and Kannan, N. (2014) Application of Silica Nanoparticles in Maize to Enhance Fungal Resistance. IET Nanobiotechnology, 8, 133-137. https://doi.org/10.1049/iet-nbt.2013.0004 |
[8] | Kalteh, M., Alipour, Z.T., Ashraf, S., et al. (2014) Effect of Silica Nanoparticles on Basil (Ocimum basilicum) under Salinity Stress. Journal of Chemical Health Risks, 4, 49-55. |
[9] | Mahmoud, L.M., Dutt, M., Shalan, A.M., El-Kady, M.E., El-Boray, M.S., Shabana, Y.M., et al. (2020) Silicon Nanoparticles Mitigate Oxidative Stress of in vitro-Derived Banana (Musa acuminata ‘Grand Nain’) under Simulated Water Deficit or Salinity Stress. South African Journal of Botany, 132, 155-163. https://doi.org/10.1016/j.sajb.2020.04.027 |
[10] | Farhangi-Abriz, S. and Torabian, S. (2018) Nano-Silicon Alters Antioxidant Activities of Soybean Seedlings under Salt Toxicity. Protoplasma, 255, 953-962. https://doi.org/10.1007/s00709-017-1202-0 |
[11] | Qados, A. (2015) Mechanism of Nanosilicon-Mediated Alleviation of Salinity Stress in Faba Bean (Vicia faba L.) Plants. American Journal of Experimental Agriculture, 7, 78-95. https://doi.org/10.9734/ajea/2015/15110 |
[12] | Haghighi, M. and Pessarakli, M. (2013) Influence of Silicon and Nano-Silicon on Salinity Tolerance of Cherry Tomatoes (Solanum lycopersicum L.) at Early Growth Stage. Scientia Horticulturae, 161, 111-117. https://doi.org/10.1016/j.scienta.2013.06.034 |
[13] | Avestan, S., Ghasemnezhad, M., Esfahani, M. and Byrt, C.S. (2019) Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants. Agronomy, 9, Article 246. https://doi.org/10.3390/agronomy9050246 |
[14] | Naguib, D.M. and Abdalla, H. (2019) Metabolic Status during Germination of Nano Silica Primed Zea mays Seeds under Salinity Stress. Journal of Crop Science and Biotechnology, 22, 415-423. https://doi.org/10.1007/s12892-019-0168-0 |
[15] | Nayyar, H. and Walia, D.P. (2003) Water Stress Induced Proline Accumulation in Contrasting Wheat Genotypes as Affected by Calcium and Abscisic Acid. Biologia plantarum, 46, 275-279. https://doi.org/10.1023/a:1022867030790 |
[16] | Abdel-Haliem, M.E.F., Hegazy, H.S., Hassan, N.S. and Naguib, D.M. (2017) Effect of Silica Ions and Nano Silica on Rice Plants under Salinity Stress. Ecological Engineering, 99, 282-289. https://doi.org/10.1016/j.ecoleng.2016.11.060 |
[17] | Ashkavand, P., Tabari, M., Zarafshar, M., Tomášková, I. and Struve, D. (2015) Effect of SiO2 Nanoparticles on Drought Resistance in Hawthorn Seedlings. Forest Research Papers, 76, 350-359. https://doi.org/10.1515/frp-2015-0034 |
[18] | Ashkavand, P., Zarafshar, M., Tabari, M., Mirzaie, J., Nikpour, A., Bordbar, S.K., et al. (2018) Application of SiO2 Nanoparticles as Pretreatment Alleviates the Impact of Drought on the Physiological Performance of Prunus Mahaleb (Rosaceae). Boletín de la Sociedad Argentina de Botánica, 53, 207-219. https://doi.org/10.31055/1851.2372.v53.n2.20578 |
[19] | Boaretto, L.F., Carvalho, G., Borgo, L., Creste, S., Landell, M.G.A., Mazzafera, P., et al. (2014) Water Stress Reveals Differential Antioxidant Responses of Tolerant and Non-Tolerant Sugarcane Genotypes. Plant Physiology and Biochemistry, 74, 165-175. https://doi.org/10.1016/j.plaphy.2013.11.016 |
[20] | Zahedi, S.M., Moharrami, F., Sarikhani, S. and Padervand, M. (2020) Selenium and Silica Nanostructure-Based Recovery of Strawberry Plants Subjected to Drought Stress. Scientific Reports, 10, Article No. 17672. https://doi.org/10.1038/s41598-020-74273-9 |
[21] | Namjoyan, S., Sorooshzadeh, A., Rajabi, A. and Aghaalikhani, M. (2020) Nano-Silicon Protects Sugar Beet Plants against Water Deficit Stress by Improving the Antioxidant Systems and Compatible Solutes. Acta Physiologiae Plantarum, 42, Article No. 157. https://doi.org/10.1007/s11738-020-03137-6 |
[22] | Akhtar, N., Ilyas, N., Mashwani, Z., Hayat, R., Yasmin, H., Noureldeen, A., et al. (2021) Synergistic Effects of Plant Growth Promoting Rhizobacteria and Silicon Dioxide Nano-Particles for Amelioration of Drought Stress in Wheat. Plant Physiology and Biochemistry, 166, 160-176. https://doi.org/10.1016/j.plaphy.2021.05.039 |
[23] | Rai-Kalal, P., Tomar, R.S. and Jajoo, A. (2021) Seed Nanopriming by Silicon Oxide Improves Drought Stress Alleviation Potential in Wheat Plants. Functional Plant Biology, 48, 905-915. https://doi.org/10.1071/fp21079 |
[24] | Gao, M., Zhou, J., Liu, H., Zhang, W., Hu, Y., Liang, J., et al. (2018) Foliar Spraying with Silicon and Selenium Reduces Cadmium Uptake and Mitigates Cadmium Toxicity in Rice. Science of The Total Environment, 631, 1100-1108. https://doi.org/10.1016/j.scitotenv.2018.03.047 |
[25] | Khan, Z.S., Rizwan, M., Hafeez, M., Ali, S., Adrees, M., Qayyum, M.F., et al. (2019) Effects of Silicon Nanoparticles on Growth and Physiology of Wheat in Cadmium Contaminated Soil under Different Soil Moisture Levels. Environmental Science and Pollution Research, 27, 4958-4968. https://doi.org/10.1007/s11356-019-06673-y |
[26] | Tripathi, D.K., Singh, V.P., Prasad, S.M., Chauhan, D.K. and Dubey, N.K. (2015) Silicon Nanoparticles (SiNp) Alleviate Chromium (VI) Phytotoxicity in Pisum sativum (L.) Seedlings. Plant Physiology and Biochemistry, 96, 189-198. https://doi.org/10.1016/j.plaphy.2015.07.026 |
[27] | Chen, R., Zhang, C., Zhao, Y., Huang, Y. and Liu, Z. (2017) Foliar Application with Nano-Silicon Reduced Cadmium Accumulation in Grains by Inhibiting Cadmium Translocation in Rice Plants. Environmental Science and Pollution Research, 25, 2361-2368. https://doi.org/10.1007/s11356-017-0681-z |
[28] | Chandra, J., Chauhan, R., Korram, J., Satnami, M.L. and Keshavkant, S. (2020) Silica Nanoparticle Minimizes Aluminium Imposed Injuries by Impeding Cytotoxic Agents and over Expressing Protective Genes in Cicer Arietinum. Scientia Horticulturae, 260, Article 108885. https://doi.org/10.1016/j.scienta.2019.108885 |
[29] | Kim, Y., Khan, A.L., Waqas, M. and Lee, I. (2017) Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. Frontiers in Plant Science, 8, Article 510. https://doi.org/10.3389/fpls.2017.00510 |
[30] | Ali, S., Rizwan, M., Hussain, A., Zia ur Rehman, M., Ali, B., Yousaf, B., et al. (2019) Silicon Nanoparticles Enhanced the Growth and Reduced the Cadmium Accumulation in Grains of Wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 140, 1-8. https://doi.org/10.1016/j.plaphy.2019.04.041 |
[31] | Tripathi, D.K., Singh, S., Singh, V.P., Prasad, S.M., Chauhan, D.K. and Dubey, N.K. (2016) Silicon Nanoparticles More Efficiently Alleviate Arsenate Toxicity than Silicon in Maize Cultiver and Hybrid Differing in Arsenate Tolerance. Frontiers in Environmental Science, 4, Article 46. https://doi.org/10.3389/fenvs.2016.00046 |
[32] | Wang, S., Wang, F. and Gao, S. (2014) Foliar Application with Nano-Silicon Alleviates Cd Toxicity in Rice Seedlings. Environmental Science and Pollution Research, 22, 2837-2845. https://doi.org/10.1007/s11356-014-3525-0 |
[33] | de Sousa, A., Saleh, A.M., Habeeb, T.H., Hassan, Y.M., Zrieq, R., Wadaan, M.A.M., et al. (2019) Silicon Dioxide Nanoparticles Ameliorate the Phytotoxic Hazards of Aluminum in Maize Grown on Acidic Soil. Science of The Total Environment, 693, Article 133636. https://doi.org/10.1016/j.scitotenv.2019.133636 |
[34] | Cui, J., Liu, T., Li, F., Yi, J., Liu, C. and Yu, H. (2017) Silica Nanoparticles Alleviate Cadmium Toxicity in Rice Cells: Mechanisms and Size Effects. Environmental Pollution, 228, 363-369. https://doi.org/10.1016/j.envpol.2017.05.014 |
[35] | Wang, M., Gao, L., Dong, S., Sun, Y., Shen, Q. and Guo, S. (2017) Role of Silicon on Plant-Pathogen Interactions. Frontiers in Plant Science, 8, Article 701. https://doi.org/10.3389/fpls.2017.00701 |
[36] | 王世华. 叶面喷施纳米硅增强水稻抗重金属毒害机理研究[D]: [博士学位论文]. 南京: 南京农业大学, 2007. |
[37] | 吴长安. 叶面喷纳米硅对水稻砷吸收的抑制作用研究[J]. 广东化工, 2018, 45(15): 96, 80. |
[38] | Cui, J., Jin, Q., Li, F. and Chen, L. (2022) Silicon Reduces the Uptake of Cadmium in Hydroponically Grown Rice Seedlings: Why Nanoscale Silica Is More Effective than Silicate. Environmental Science: Nano, 9, 1961-1973. https://doi.org/10.1039/d1en00973g |
[39] | Khan, M.R. and Siddiqui, Z.A. (2020) Use of Silicon Dioxide Nanoparticles for the Management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani Disease Complex of Beetroot (Beta vulgaris L.). Scientia Horticulturae, 265, Article 109211. https://doi.org/10.1016/j.scienta.2020.109211 |
[40] | Reynolds, O.L., Keeping, M.G. and Meyer, J.H. (2009) Silicon‐Augmented Resistance of Plants to Herbivorous Insects: A Review. Annals of Applied Biology, 155, 171-186. https://doi.org/10.1111/j.1744-7348.2009.00348.x |
[41] | Hasan, K.A., Soliman, H., Baka, Z. and Shabana, Y.M. (2020) Efficacy of Nano-Silicon in the Control of Chocolate Spot Disease of Vicia faba L. Caused By Botrytis fabae. Egyptian Journal of Basic and Applied Sciences, 7, 53-66. https://doi.org/10.1080/2314808x.2020.1727627 |
[42] | Nazaralian, S., Majd, A., Irian, S., Najafi, F., Ghahremaninejad, F., Landberg, T., et al. (2017) Comparison of Silicon Nanoparticles and Silicate Treatments in Fenugreek. Plant Physiology and Biochemistry, 115, 25-33. https://doi.org/10.1016/j.plaphy.2017.03.009 |
[43] | Shabbaj, I.I., Madany, M.M.Y., Tammar, A., Balkhyour, M.A. and AbdElgawad, H. (2021) Silicon Dioxide Nanoparticles Orchestrate Carbon and Nitrogen Metabolism in Pea Seedlings to Cope with Broomrape Infection. Environmental Science: Nano, 8, 1960-1977. https://doi.org/10.1039/d0en01278e |
[44] | Buchman, J.T., Elmer, W.H., Ma, C., Landy, K.M., White, J.C. and Haynes, C.L. (2019) Chitosan-Coated Mesoporous Silica Nanoparticle Treatment of Citrullus lanatus (Watermelon): Enhanced Fungal Disease Suppression and Modulated Expression of Stress-Related Genes. ACS Sustainable Chemistry & Engineering, 7, 19649-19659. https://doi.org/10.1021/acssuschemeng.9b04800 |
[45] | Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V. and Kannan, N. (2014) Foliar Application of Silica Nanoparticles on the Phytochemical Responses of Maize (Zea mays L.) and Its Toxicological Behavior. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 44, 1128-1131. https://doi.org/10.1080/15533174.2013.799197 |
[46] | 刘显峰. 微纳米硅肥在水稻种植上的应用[J]. 特种经济动植物, 2021, 24(9): 112-114. |
[47] | Fan, N., Zhao, C., Yue, L., Ji, H., Wang, X., Xiao, Z., et al. (2022) Nanosilicon Alters Oxidative Stress and Defence Reactions in Plants: A Meta-Analysis, Mechanism and Perspective. Environmental Science: Nano, 9, 3742-3755. https://doi.org/10.1039/d2en00478j |
[48] | Singh, A., Rajput, V., Varshney, A., Sharma, R., Ghazaryan, K., Minkina, T., et al. (2024) Revolutionizing Crop Production: Nanoscale Wonders—Current Applications, Advances, and Future Frontiers. Egyptian Journal of Soil Science, 64, 221-258. https://doi.org/10.21608/ejss.2023.246354.1684 |
[49] | Chen, M., Liu, J., Kong, Y., Zheng, W., Wang, Y., Zou, X., et al. (2025) Facile Synthesis of Surface-Etched Functionalized Porous Nanosilica Microspheres for the Simultaneous Removal of Cadmium and Malachite Green: Experimental and DFT Studies. Separation and Purification Technology, 353, Article 128585. https://doi.org/10.1016/j.seppur.2024.128585 |