全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光热发电吸热塔对飞机颠簸影响的数值分析
Numerical Analysis of the Effect of Photothermal Power Generation Absorber Tower on Aircraft Bumpiness

DOI: 10.12677/app.2025.154020, PP. 183-192

Keywords: 吸热塔,计算流体学,涡流耗散率,飞机颠簸
Endothermic Tower
, CFD, Eddy Dissipation Rate, Aircraft Bumpiness

Full-Text   Cite this paper   Add to My Lib

Abstract:

光热发电吸热塔在运行条件下对周围空气形成加热,易导致吸热塔周围出现热对流现象。热对流对临近区域飞行运行安全可能造成一定影响。本文基于计算流体方法建立了光热发电吸热塔三维计算模型,分析了吸热塔顶部不同高度的温度场、湍流强度以及涡流耗散率的大小,并基于涡流耗散率的大小评估了吸热塔对飞机颠簸的影响。结果显示,在当前条件下吸热塔所形成的局部热湍流影响的范围较小,飞机在距离吸热塔高50 m以上及吸热塔后方600 m范围以外运行基本没有影响。
In solar thermal power generation systems, the heat absorption tower heats the surrounding air during operation, which can induce thermal convection in its vicinity. This thermal convection may pose potential risks to the flight safety of aircraft operating in adjacent airspace. To investigate this phenomenon, a three-dimensional computational model of the heat absorption tower was developed using computational fluid dynamics (CFD). The model was employed to analyze the temperature field, turbulence intensity, and eddy dissipation rate at various heights near the top of the tower. Based on the eddy dissipation rate, the impact of the heat absorption tower on aircraft turbulence was evaluated. The results indicate that, under the given conditions, the spatial extent of local thermal turbulence generated by the heat absorption tower is limited. Specifically, the influence on aircraft operations becomes negligible at altitudes exceeding 50 meters above the tower and at distances greater than 600 meters downstream of the tower.

References

[1]  Argyropoulos, C.D. and Markatos, N.C. (2015) Recent Advances on the Numerical Modelling of Turbulent Flows. Applied Mathematical Modelling, 39, 693-732.
https://doi.org/10.1016/j.apm.2014.07.001

[2]  王永忠. 大气湍流对飞机颠簸的影响[J]. 西南交通大学学报, 2006, 41(3): 279-283.
[3]  Zhou, Y., Wei, M., Cheng, Z., Ning, Y. and Qi, L. (2013) The Wind and Temperature Information of AMDAR Data Applying to the Analysis of Severe Weather Nowcasting of Airport. 2013 IEEE Third International Conference on Information Science and Technology (ICIST), Yangzhou, 23-25 March 2013, 1005-1010.
https://doi.org/10.1109/icist.2013.6747706

[4]  范源丹. 晴空湍流对飞机的影响分析[J]. 交通技术, 2019, 8(1): 1-10.
[5]  MacCready, P.B. (1964) Standardization of Gustiness Values from Aircraft. Journal of Applied Meteorology, 3, 439-449.
https://doi.org/10.1175/1520-0450(1964)003<0439:sogvfa>2.0.co;2

[6]  Huang, R., Sun, H., Wu, C., Wang, C. and Lu, B. (2019) Estimating Eddy Dissipation Rate with QAR Flight Big Data. Applied Sciences, 9, Article 5192.
https://doi.org/10.3390/app9235192

[7]  Sarpkaya, T., Robins, R.E. and Delisi, D.P. (2001) Wake-vortex Eddy-Dissipation Model Predictions Compared with Observations. Journal of Aircraft, 38, 687-692.
https://doi.org/10.2514/2.2820

[8]  Sharman, R.D. and Pearson, J.M. (2017) Prediction of Energy Dissipation Rates for Aviation Turbulence. Part I: Forecasting Nonconvective Turbulence. Journal of Applied Meteorology and Climatology, 56, 317-337.
https://doi.org/10.1175/jamc-d-16-0205.1

[9]  Chan, P.W. (2011) Generation of an Eddy Dissipation Rate Map at the Hong Kong International Airport Based on Doppler Lidar Data. Journal of Atmospheric and Oceanic Technology, 28, 37-49.
https://doi.org/10.1175/2010jtecha1458.1

[10]  Takacs, A., Holland, L., Hueftle, R., Brown, B. and Holmes, A. (2006) Using in situ Eddy Dissipation Rate (EDR) Observations for Turbulence Forecast Verification. 12th Conference on Aviation Range and Aerospace Meteorology, Atlanta, 31 January 2006, 1-18.
[11]  Markatos, N.C. (1986) The Mathematical Modelling of Turbulent Flows. Applied Mathematical Modelling, 10, 190-220.
https://doi.org/10.1016/0307-904x(86)90045-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133