|
NLRP3炎症小体与特发性膜性肾病的相关性研究
|
Abstract:
特发性膜性肾病(IMN)是一种自身免疫性疾病,是肾病综合征的主要原因之一,由自身抗体攻击足细胞抗原导致原位产生免疫复合物而引起,该疾病表现出异质性的结果,大约30%的病例进展为终末期肾病。NLRP3炎性小体是一种细胞内多蛋白复合物,作为先天免疫系统中的重要传感器,NLRP3检测外源性致病性侵袭和内源性细胞损伤,并通过形成NLRP3炎性小体(一种激活caspase-1的超分子复合物)来做出反应。越来越多的证据表明,特发性膜性肾病的发病与NLRP3炎症小体有关。抑制NLRP3炎性小体为治疗特发性膜性肾病提供了更多的可能性。
Idiopathic membranous nephropathy (IMN) is an autoimmune disease and one of the main causes of nephrotic syndrome. It is caused by the in-situ formation of immune complexes resulting from the attack of autoantibodies on podocyte antigens. This disease shows heterogeneous outcomes, and approximately 30% of cases progress to end-stage renal disease. The NLRP3 inflammasome is an intracellular multi-protein complex. As an important sensor in the innate immune system, NLRP3 detects exogenous pathogenic invasions and endogenous cell damage and responds by forming the NLRP3 inflammasome, a supramolecular complex that activates caspase-1. There is increasing evidence suggesting that the onset of idiopathic membranous nephropathy is related to the NLRP3 inflammasome. Inhibiting the NLRP3 inflammasome provides more possibilities for the treatment of idiopathic membranous nephropathy.
[1] | Schroder, K. and Tschopp, J. (2010) The Inflammasomes. Cell, 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040 |
[2] | Gritsenko, A., Green, J.P., Brough, D. and Lopez-Castejon, G. (2020) Mechanisms of NLRP3 Priming in Inflammaging and Age Related Diseases. Cytokine & Growth Factor Reviews, 55, 15-25. https://doi.org/10.1016/j.cytogfr.2020.08.003 |
[3] | Swanson, K.V., Deng, M. and Ting, J.P.-Y. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489. https://doi.org/10.1038/s41577-019-0165-0 |
[4] | Sharma, M. and de Alba, E. (2021) Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes. International Journal of Molecular Sciences, 22, Article 872. https://doi.org/10.3390/ijms22020872 |
[5] | Green, J.P., Yu, S., Martín-Sánchez, F., Pelegrin, P., Lopez-Castejon, G., Lawrence, C.B., et al. (2018) Chloride Regulates Dynamic NLRP3-Dependent ASC Oligomerization and Inflammasome Priming. Proceedings of the National Academy of Sciences, 115, E9371-E9380. https://doi.org/10.1073/pnas.1812744115 |
[6] | Murakami, T., Ockinger, J., Yu, J., Byles, V., McColl, A., Hofer, A.M., et al. (2012) Critical Role for Calcium Mobilization in Activation of the NLRP3 Inflammasome. Proceedings of the National Academy of Sciences, 109, 11282-11287. https://doi.org/10.1073/pnas.1117765109 |
[7] | Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B.L., Rajendiran, T.M. and Núñez, G. (2013) K+ Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins and Particulate Matter. Immunity, 38, 1142-1153. |
[8] | Zhong, Z., Liang, S., Sanchez-Lopez, E., He, F., Shalapour, S., Lin, X., et al. (2018) New Mitochondrial DNA Synthesis Enables NLRP3 Inflammasome Activation. Nature, 560, 198-203. https://doi.org/10.1038/s41586-018-0372-z |
[9] | Gaidt, M.M. and Hornung, V. (2018) The NLRP3 Inflammasome Renders Cell Death Pro-Inflammatory. Journal of Molecular Biology, 430, 133-141. https://doi.org/10.1016/j.jmb.2017.11.013 |
[10] | Campden, R.I. and Zhang, Y. (2019) The Role of Lysosomal Cysteine Cathepsins in NLRP3 Inflammasome Activation. Archives of Biochemistry and Biophysics, 670, 32-42. https://doi.org/10.1016/j.abb.2019.02.015 |
[11] | Fry, A.M., O’Regan, L., Sabir, S.R. and Bayliss, R. (2012) Cell Cycle Regulation by the NEK Family of Protein Kinases. Journal of Cell Science, 125, 4423-4433. https://doi.org/10.1242/jcs.111195 |
[12] | He, Y., Zeng, M.Y., Yang, D., Motro, B. and Núñez, G. (2016) NEK7 Is an Essential Mediator of NLRP3 Activation Downstream of Potassium Efflux. Nature, 530, 354-357. https://doi.org/10.1038/nature16959 |
[13] | Shi, H., Wang, Y., Li, X., Zhan, X., Tang, M., Fina, M., et al. (2015) NLRP3 Activation and Mitosis Are Mutually Exclusive Events Coordinated by NEK7, a New Inflammasome Component. Nature Immunology, 17, 250-258. https://doi.org/10.1038/ni.3333 |
[14] | Sharif, H., Wang, L., Wang, W.L., Magupalli, V.G., Andreeva, L., Qiao, Q., et al. (2019) Structural Mechanism for NEK7-Licensed Activation of NLRP3 Inflammasome. Nature, 570, 338-343. https://doi.org/10.1038/s41586-019-1295-z |
[15] | Broz, P. and Dixit, V.M. (2016) Inflammasomes: Mechanism of Assembly, Regulation and Signalling. Nature Reviews Immunology, 16, 407-420. https://doi.org/10.1038/nri.2016.58 |
[16] | Ayalon, R. and Beck, L.H. (2013) Membranous Nephropathy: Not Just a Disease for Adults. Pediatric Nephrology, 30, 31-39. https://doi.org/10.1007/s00467-013-2717-z |
[17] | Ponticelli, C. and Glassock, R.J. (2014) Glomerular Diseases: Membranous Nephropathy—A Modern View. Clinical Journal of the American Society of Nephrology, 9, 609-616. https://doi.org/10.2215/cjn.04160413 |
[18] | Lai, W.L., Yeh, T.H., Chen, P.M., Chan, C.K., Chiang, W.C., Chen, Y.M., et al. (2015) Membranous Nephropathy: A Review on the Pathogenesis, Diagnosis, and Treatment. Journal of the Formosan Medical Association, 114, 102-111. https://doi.org/10.1016/j.jfma.2014.11.002 |
[19] | Peh, C.A. (2013) Commentary on the KDIGO Clinical Practice Guideline for Glomerulonephritis. Nephrology, 18, 483-484. https://doi.org/10.1111/nep.12091 |
[20] | Sinico, R.A., Mezzina, N., Trezzi, B., Ghiggeri, G. and Radice, A. (2015) Immunology of Membranous Nephropathy: From Animal Models to Humans. Clinical and Experimental Immunology, 183, 157-165. https://doi.org/10.1111/cei.12729 |
[21] | D’Arienzo, A., Andreani, L., Sacchetti, F., Colangeli, S. and Capanna, R. (2019) Hereditary Multiple Exostoses: Current Insights. Orthopedic Research and Reviews, 11, 199-211. https://doi.org/10.2147/orr.s183979 |
[22] | Simon, P., Ramée, M., Autuly, V., Laruelle, E., Charasse, C., Cam, G., et al. (1994) Epidemiology of Primary Glomerular Diseases in a French Region. Variations According to Period and Age. Kidney International, 46, 1192-1198. https://doi.org/10.1038/ki.1994.384 |
[23] | Maisonneuve, P., Agodoa, L., Gellert, R., Stewart, J.H., Buccianti, G., Lowenfels, A.B., et al. (2000) Distribution of Primary Renal Diseases Leading to End-Stage Renal Failure in the United States, Europe, and Australia/New Zealand: Results from an International Comparative Study. American Journal of Kidney Diseases, 35, 157-165. https://doi.org/10.1016/s0272-6386(00)70316-7 |
[24] | Ronco, P. and Debiec, H. (2015) Pathophysiological Advances in Membranous Nephropathy: Time for a Shift in Patient’s Care. The Lancet, 385, 1983-1992. https://doi.org/10.1016/s0140-6736(15)60731-0 |
[25] | 南蕾, 玄红运, 米焱, 等. NLRP3炎症小体参与特发性膜性肾病发生的研究[J]. 中国免疫学杂志, 2024, 40(2): 366-371. |
[26] | Ren, Y., Wang, D., Lu, F., Zou, X., Xu, L., Wang, K., et al. (2018) Coptidis Rhizoma Inhibits NLRP3 Inflammasome Activation and Alleviates Renal Damage in Early Obesity-Related Glomerulopathy. Phytomedicine, 49, 52-65. https://doi.org/10.1016/j.phymed.2018.05.019 |
[27] | Liu, B., Lu, R., Li, H., Zhou, Y., Zhang, P., Bai, L., et al. (2019) Zhen-Wu-Tang Ameliorates Membranous Nephropathy Rats through Inhibiting NF-κB Pathway and NLRP3 Inflammasome. Phytomedicine, 59, Article 152913. https://doi.org/10.1016/j.phymed.2019.152913 |
[28] | Yang, S., Han, Y., He, J., Yang, M., Zhang, W., Zhan, M., et al. (2020) Mitochondria Targeted Peptide SS-31 Prevent on Cisplatin-Induced Acute Kidney Injury via Regulating Mitochondrial ROS-NLRP3 Pathway. Biomedicine & Pharmacotherapy, 130, Article 110521. https://doi.org/10.1016/j.biopha.2020.110521 |
[29] | Cremoni, M., Brglez, V., Perez, S., Decoupigny, F., Zorzi, K., Andreani, M., et al. (2020) Th17-Immune Response in Patients with Membranous Nephropathy Is Associated with Thrombosis and Relapses. Frontiers in Immunology, 11, Article 574997. https://doi.org/10.3389/fimmu.2020.574997 |
[30] | Li, H., Wu, H., Guo, Q., Yu, H., Xu, Y., Yu, J., et al. (2020) Myeloid-Derived Suppressor Cells Promote the Progression of Primary Membranous Nephropathy by Enhancing Th17 Response. Frontiers in Immunology, 11, Article 1777. https://doi.org/10.3389/fimmu.2020.01777 |
[31] | Motavalli, R., Etemadi, J., Soltani-Zangbar, M.S., Ardalan, M., Kahroba, H., Roshangar, L., et al. (2021) Altered Th17/Treg Ratio as a Possible Mechanism in Pathogenesis of Idiopathic Membranous Nephropathy. Cytokine, 141, Article 155452. https://doi.org/10.1016/j.cyto.2021.155452 |
[32] | Vilaysane, A., Chun, J., Seamone, M.E., Wang, W., Chin, R., Hirota, S., et al. (2010) The NLRP3 Inflammasome Promotes Renal Inflammation and Contributes to CKD. Journal of the American Society of Nephrology, 21, 1732-1744. https://doi.org/10.1681/asn.2010020143 |
[33] | Ke, B., Shen, W., Fang, X. and Wu, Q. (2017) The NLPR3 Inflammasome and Obesity‐Related Kidney Disease. Journal of Cellular and Molecular Medicine, 22, 16-24. https://doi.org/10.1111/jcmm.13333 |
[34] | Li, S., Lin, Q., Shao, X., Mou, S., Gu, L., Wang, L., et al. (2019) NLRP3 Inflammasome Inhibition Attenuates Cisplatin-Induced Renal Fibrosis by Decreasing Oxidative Stress and Inflammation. Experimental Cell Research, 383, Article 111488. https://doi.org/10.1016/j.yexcr.2019.07.001 |
[35] | Guo, J., Shi, T., Cui, X., Rong, Y., Zhou, T., Zhang, Z., et al. (2014) Effects of Silica Exposure on the Cardiac and Renal Inflammatory and Fibrotic Response and the Antagonistic Role of Interleukin-1 Beta in C57BL/6 Mice. Archives of Toxicology, 90, 247-258. https://doi.org/10.1007/s00204-014-1405-5 |
[36] | Fervenza, F.C., Appel, G.B., Barbour, S.J., et al. (2019) Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy. The New England Journal of Medicine, 381, 36-46. |