|
人参皂苷Rg1通过MAPK通路对小鼠再生障碍性贫血治疗的影响
|
Abstract:
目的:本研究旨在评价人参皂苷Rg1对AA的保护作用,并进一步探讨其机制。方法:本研究通过注射环磷酰胺(CTX)建立骨髓抑制小鼠模型。CTX + Rg1组小鼠Rg1灌胃13 d。HE检测骨髓、胸腺和脾脏的病理变化。取小鼠眼眶血进行血常规检查。然后用流式细胞仪检测骨髓细胞的比例。通过WB检测MAPK通路中p-p38、p38、p-JNK、JNK、p-ERK、ERK的表达。结果:病理检查显示,CTX严重破坏小鼠骨髓、胸腺和脾脏的结构特征,降低骨髓造血细胞的比例。Rg1可通过抑制MAPK信号通路显著减轻小鼠骨髓抑制。结论:本研究提示人参皂苷Rg1通过MAPK信号通路缓解骨髓抑制作用,对AA有一定的治疗作用。
Objective: This study was designed to evaluate the protective effects of ginsenoside Rg1 on AA and further investigate the underlying mechanism. Methods: In this study, Cyclophosphamide (CTX) was injected to establish the myelosuppression mouse model. The mice in the CTX + Rg1 group were treated with Rg1 for 13 days. The pathological changes of bone marrow, thymus, and spleen were detected through HE (Hematoxylin-Eosin St). Orbital blood of mice was collected for blood routine examination. Afterwards, the proportions of bone marrow cells were evaluated by flow cytometry assay. MAPK pathway was detected via WB for the expressions of p-p38, p38, p-JNK, JNK, p-ERK, and ERK. Results: Pathological examination revealed that CTX severely damaged the structural features of the bone marrow, thymus, and spleens, and decreased the proportion of hematopoietic cells in the bone marrow of mice. Treatment of Rg1 significantly alleviated myelosuppression in mice by inhibiting MAPK signaling pathway. Conclusion: This study suggested that ginsenoside Rg1 treated AA by alleviating myelosuppression through MAPK signaling pathway.
[1] | DeZern, A.E. and Churpek, J.E. (2021) Approach to the Diagnosis of Aplastic Anemia. Blood Advances, 5, 2660-2671. https://doi.org/10.1182/bloodadvances.2021004345 |
[2] | Furlong, E. and Carter, T. (2020) Aplastic Anaemia: Current Concepts in Diagnosis and Management. Journal of Paediatrics and Child Health, 56, 1023-1028. https://doi.org/10.1111/jpc.14996 |
[3] | Kordasti, S., Costantini, B., Seidl, T., Perez Abellan, P., Martinez Llordella, M., McLornan, D., et al. (2016) Deep Phenotyping of Tregs Identifies an Immune Signature for Idiopathic Aplastic Anemia and Predicts Response to Treatment. Blood, 128, 1193-1205. https://doi.org/10.1182/blood-2016-03-703702 |
[4] | Liu, C., Sun, Y. and Shao, Z. (2019) Current Concepts of the Pathogenesis of Aplastic Anemia. Current Pharmaceutical Design, 25, 236-241. https://doi.org/10.2174/1381612825666190313113601 |
[5] | Peslak, S.A., Olson, T. and Babushok, D.V. (2017) Diagnosis and Treatment of Aplastic Anemia. Current Treatment Options in Oncology, 18, 70-92. https://doi.org/10.1007/s11864-017-0511-z |
[6] | Bacigalupo, A. (2017) How I Treat Acquired Aplastic Anemia. Blood, 129, 1428-1436. https://doi.org/10.1182/blood-2016-08-693481 |
[7] | Mancuso, C. and Santangelo, R. (2017) Panax ginseng and Panax quinquefolius: From Pharmacology to Toxicology. Food and Chemical Toxicology, 107, 362-372. https://doi.org/10.1016/j.fct.2017.07.019 |
[8] | Luo, M., Yan, D., Sun, Q., Tao, J., Xu, L., Sun, H., et al. (2019) Ginsenoside Rg1 Attenuates Cardiomyocyte Apoptosis and Inflammation via the TLR4/NF-κB/NLRP3 Pathway. Journal of Cellular Biochemistry, 121, 2994-3004. https://doi.org/10.1002/jcb.29556 |
[9] | Chen, J., Zhang, X., Liu, X., Zhang, C., Shang, W., Xue, J., et al. (2019) Ginsenoside Rg1 Promotes Cerebral Angiogenesis via the PI3K/Akt/mTOR Signaling Pathway in Ischemic Mice. European Journal of Pharmacology, 856, Article ID: 172418. https://doi.org/10.1016/j.ejphar.2019.172418 |
[10] | Jiang, L., Yin, X., Chen, Y., Chen, Y., Jiang, W., Zheng, H., et al. (2021) Proteomic Analysis Reveals Ginsenoside Rb1 Attenuates Myocardial Ischemia/Reperfusion Injury through Inhibiting ROS Production from Mitochondrial Complex I. Theranostics, 11, 1703-1720. https://doi.org/10.7150/thno.43895 |
[11] | Li, L., Wang, Y., Guo, R., Li, S., Ni, J., Gao, S., et al. (2020) Ginsenoside Rg3-Loaded, Reactive Oxygen Species-Responsive Polymeric Nanoparticles for Alleviating Myocardial Ischemia-Reperfusion Injury. Journal of Controlled Release, 317, 259-272. https://doi.org/10.1016/j.jconrel.2019.11.032 |
[12] | Zhen, N., Jin, L., Ma, J., Zhu, J., Gu, S., Wang, J., et al. (2018) Ginsenoside Rg1 Impairs Homologous Recombination Repair by Targeting CTBP-Interacting Protein and Sensitizes Hepatoblastoma Cells to DNA Damage. Anti-Cancer Drugs, 29, 756-766. https://doi.org/10.1097/cad.0000000000000646 |
[13] | Yang, H., Liu, M., Luo, P., Yao, X. and Zhou, H. (2022) Network Pharmacology Provides a Systematic Approach to Understanding the Treatment of Ischemic Heart Diseases with Traditional Chinese Medicine. Phytomedicine, 104, Article ID: 154268. https://doi.org/10.1016/j.phymed.2022.154268 |
[14] | Raghavendran, H.R.B., Sathyanath, R., Shin, J., Kim, H.K., Han, J.M., Cho, J., et al. (2012) Panax ginseng Modulates Cytokines in Bone Marrow Toxicity and Myelopoiesis: Ginsenoside Rg1 Partially Supports Myelopoiesis. PLOS ONE, 7, e33733. https://doi.org/10.1371/journal.pone.0033733 |
[15] | Suzuki, M., Shimizu, R. and Yamamoto, M. (2011) Transcriptional Regulation by GATA1 and GATA2 during Erythropoiesis. International Journal of Hematology, 93, 150-155. https://doi.org/10.1007/s12185-011-0770-6 |
[16] | Yue, J. and López, J.M. (2020) Understanding MAPK Signaling Pathways in Apoptosis. International Journal of Molecular Sciences, 21, Article 2346. https://doi.org/10.3390/ijms21072346 |
[17] | Falcicchia, C., Tozzi, F., Arancio, O., Watterson, D.M. and Origlia, N. (2020) Involvement of P38 MAPK in Synaptic Function and Dysfunction. International Journal of Molecular Sciences, 21, Article 5624. https://doi.org/10.3390/ijms21165624 |
[18] | Zheng, Y., Han, Z., Zhao, H. and Luo, Y. (2020) MAPK: A Key Player in the Development and Progression of Stroke. CNS & Neurological Disorders-Drug Targets, 19, 248-256. https://doi.org/10.2174/1871527319666200613223018 |
[19] | Xie, W., Zhou, P., Sun, Y., Meng, X., Dai, Z., Sun, G., et al. (2018) Protective Effects and Target Network Analysis of Ginsenoside Rg1 in Cerebral Ischemia and Reperfusion Injury: A Comprehensive Overview of Experimental Studies. Cells, 7, Article 270. https://doi.org/10.3390/cells7120270 |
[20] | Zhang, J., Xiong, L., Tang, W., Tang, L. and Wang, B. (2018) Hypoxic Culture Enhances the Expansion of Rat Bone Marrow-Derived Mesenchymal Stem Cells via the Regulatory Pathways of Cell Division and Apoptosis. In Vitro Cellular & Developmental Biology—Animal, 54, 666-676. https://doi.org/10.1007/s11626-018-0281-3 |
[21] | Young, N.S. (2018) Aplastic Anemia. New England Journal of Medicine, 379, 1643-1656. https://doi.org/10.1056/nejmra1413485 |
[22] | Zhu, N., Wu, D. and Ye, B. (2018) The Progress of Traditional Chinese Medicine in the Treatment of Aplastic Anemia. Journal of Translational Internal Medicine, 6, 159-164. https://doi.org/10.2478/jtim-2018-0031 |
[23] | Yang, H., Xu, X., Jiang, X. and Yao, Z. (2019) Treatment of Menorrhagia Due to Aplastic Anemia by Hysteroscopic Resection of Endometrial Functional Layer and Levonorgestrel-Releasing Intra-Uterine System. Medicine, 98, e15156. https://doi.org/10.1097/md.0000000000015156 |
[24] | Dijiong, W., Yiping, S., Baodong, Y., Bingmu, F., Shengyun, L., Zhilu, C., et al. (2016) Efficacy and Advantages of Modified Traditional Chinese Medicine Treatments Based on “Kidney Reinforcing” for Chronic Aplastic Anemia: A Randomized Controlled Clinical Trial. Journal of Traditional Chinese Medicine, 36, 434-443. https://doi.org/10.1016/s0254-6272(16)30059-0 |
[25] | Lu, Y., Du, Z., Li, Y., Wang, J., Zhao, M., Jiang, Y., et al. (2018) Effects of Baoyuan Decoction, a Traditional Chinese Medicine Formula, on the Activities and mRNA Expression of Seven CYP Isozymes in Rats. Journal of Ethnopharmacology, 225, 327-335. https://doi.org/10.1016/j.jep.2018.07.023 |
[26] | Cai, S., Zhou, Y., Liu, J., Li, C., Jia, D., Zhang, M., et al. (2018) Alleviation of Ginsenoside Rg1 on Hematopoietic Homeostasis Defects Caused by Lead-Acetate. Biomedicine & Pharmacotherapy, 97, 1204-1211. https://doi.org/10.1016/j.biopha.2017.10.148 |
[27] | Tang, Y.L., Zhou, Y., Wang, Y.P., Wang, J.W., Ding, J.C. (2015) SIRT6/NF-κB Signaling Axis in Ginsenoside Rg1-Delayed Hematopoietic Stem/Progenitor Cell Senescence. International Journal of Clinical and Experimental Pathology, 8, 5591-5596. |
[28] | Tang, Y., Zhou, Y., Wang, Y., He, Y., Ding, J., Li, Y., et al. (2020) Ginsenoside Rg1 Protects against Sca-1+ HSC/HPC Cell Aging by Regulating the SIRT1-FOXO3 and SIRT3-SOD2 Signaling Pathways in a γ-Ray Irradiation-Induced Aging Mice Model. Experimental and Therapeutic Medicine, 20, 1245-1252. https://doi.org/10.3892/etm.2020.8810 |
[29] | Zeng, Y., Hu, W., Jing, P., Chen, X., Wang, Z., Wang, L., et al. (2018) The Regulation of Ginsenoside Rg1 Upon Aging of Bone Marrow Stromal Cell Contribute to Delaying Senescence of Bone Marrow Mononuclear Cells (BMNCs). Life Sciences, 209, 63-68. https://doi.org/10.1016/j.lfs.2018.07.025 |
[30] | Yang, L., Duan, F., Su, D., Li, Y., Ma, L., Shi, B., et al. (2020) The Effects of CTX Damage or Inhibition of Bone Marrow Hematopoiesis and GM-CSF Stimulation of Bone Marrow Hematopoiesis on the Peripheral Blood TCRβ CDR3 Repertoire of BALB/C Mice. Immunopharmacology and Immunotoxicology, 42, 110-118. https://doi.org/10.1080/08923973.2020.1728309 |
[31] | Laurenti, E. and Göttgens, B. (2018) From Haematopoietic Stem Cells to Complex Differentiation Landscapes. Nature, 553, 418-426. https://doi.org/10.1038/nature25022 |
[32] | Seita, J. and Weissman, I.L. (2010) Hematopoietic Stem Cell: Self‐Renewal versus Differentiation. WIREs Systems Biology and Medicine, 2, 640-653. https://doi.org/10.1002/wsbm.86 |
[33] | Baron, M.H., Isern, J. and Fraser, S.T. (2012) The Embryonic Origins of Erythropoiesis in Mammals. Blood, 119, 4828-4837. https://doi.org/10.1182/blood-2012-01-153486 |
[34] | Sugimura, R., Jha, D.K., Han, A., Soria-Valles, C., da Rocha, E.L., Lu, Y., et al. (2017) Haematopoietic Stem and Progenitor Cells from Human Pluripotent Stem Cells. Nature, 545, 432-438. https://doi.org/10.1038/nature22370 |
[35] | Hung, C., Wang, K., Liou, Y., Wang, J., Huang, A.Y., Lee, T., et al. (2020) Negative Regulation of the Differentiation of Flk2− CD34− LSK Hematopoietic Stem Cells by EKLF/KLF1. International Journal of Molecular Sciences, 21, Article 8448. https://doi.org/10.3390/ijms21228448 |
[36] | Kondo, M. (2010) Lymphoid and Myeloid Lineage Commitment in Multipotent Hematopoietic Progenitors. Immunological Reviews, 238, 37-46. https://doi.org/10.1111/j.1600-065x.2010.00963.x |
[37] | Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., et al. (2003) Biology of Hematopoietic Stem Cells and Progenitors: Implications for Clinical Application. Annual Review of Immunology, 21, 759-806. https://doi.org/10.1146/annurev.immunol.21.120601.141007 |
[38] | Mold, J.E., Venkatasubrahmanyam, S., Burt, T.D., Michaëlsson, J., Rivera, J.M., Galkina, S.A., et al. (2010) Fetal and Adult Hematopoietic Stem Cells Give Rise to Distinct T Cell Lineages in Humans. Science, 330, 1695-1699. https://doi.org/10.1126/science.1196509 |
[39] | Nishizawa, M., Chonabayashi, K., Nomura, M., Tanaka, A., Nakamura, M., Inagaki, A., et al. (2016) Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of Differentiation Capacity. Cell Stem Cell, 19, 341-354. https://doi.org/10.1016/j.stem.2016.06.019 |
[40] | Will, B. and Steidl, U. (2010) Multi-Parameter Fluorescence-Activated Cell Sorting and Analysis of Stem and Progenitor Cells in Myeloid Malignancies. Best Practice & Research Clinical Haematology, 23, 391-401. https://doi.org/10.1016/j.beha.2010.06.006 |
[41] | Agger, K., Nishimura, K., Miyagi, S., Messling, J., Rasmussen, K.D. and Helin, K. (2019) The KDM4/JMJD2 Histone Demethylases Are Required for Hematopoietic Stem Cell Maintenance. Blood, 134, 1154-1158. https://doi.org/10.1182/blood.2019000855 |
[42] | Ueda, T., Yokota, T., Okuzaki, D., Uno, Y., Mashimo, T., Kubota, Y., et al. (2019) Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Stem Cell Reports, 13, 992-1005. https://doi.org/10.1016/j.stemcr.2019.11.002 |
[43] | Peng, H., Yu, Y., Gu, H., Qi, B. and Yu, A. (2022) MicroRNA-483-5p Inhibits Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells by Targeting the RPL31-Mediated RAS/MEK/ERK Signaling Pathway. Cellular Signalling, 93, Article ID: 110298. https://doi.org/10.1016/j.cellsig.2022.110298 |
[44] | Tsubaki, M., Satou, T., Itoh, T., Imano, M., Yanae, M., Kato, C., et al. (2012) Bisphosphonate-and Statin-Induced Enhancement of OPG Expression and Inhibition of CD9, M-CSF, and RANKL Expressions via Inhibition of the Ras/MEK/ERK Pathway and Activation of P38mapk in Mouse Bone Marrow Stromal Cell Line ST2. Molecular and Cellular Endocrinology, 361, 219-231. https://doi.org/10.1016/j.mce.2012.05.002 |
[45] | Yip, R.K.H., Rimes, J.S., Capaldo, B.D., Vaillant, F., Mouchemore, K.A., Pal, B., et al. (2021) Mammary Tumour Cells Remodel the Bone Marrow Vascular Microenvironment to Support Metastasis. Nature Communications, 12, Article No. 6920. https://doi.org/10.1038/s41467-021-26556-6 |
[46] | Chang, S., Li, H., Huang, Y., Tasi, W., Chou, Y. and Lu, S. (2016) SB203580 Increases G-CSF Production via a Stem-Loop Destabilizing Element in the 3’ Untranslated Region in Macrophages Independently of Its Effect on P38 MAPK Activity. Journal of Biomedical Science, 23, Article No. 3. https://doi.org/10.1186/s12929-016-0221-z |
[47] | Decean, H.P., Brie, I.C., Tatomir, C.B., Perde-Schrepler, M., Fischer-Fodor, E. and Virag, P. (2018) Targeting MAPK (p38, ERK, JNK) and Inflammatory CK (GDF-15, GM-CSF) in UVB-Activated Human Skin Cells with Vitis Vinifera Seed Extract. Journal of Environmental Pathology, Toxicology and Oncology, 37, 261-272. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2018027009 |
[48] | Koga, Y., Hisada, T., Ishizuka, T., Utsugi, M., Ono, A., Yatomi, M., et al. (2016) CREB Regulates TNF-α-Induced GM-CSF Secretion via P38 MAPK in Human Lung Fibroblasts. Allergology International, 65, 406-413. https://doi.org/10.1016/j.alit.2016.03.006 |