|
白细胞介素4诱导蛋白1在神经胶质瘤中的调节作用及研究进展
|
Abstract:
神经胶质瘤是一种常见、具有高度侵袭性的神经系统肿瘤,因生长快速,广泛浸润邻近脑组织,假性坏死和诱导血管生成,且无明显的作用靶点,所以胶质瘤预后较差,复发率高,其发生和发展受到多种细胞因子的调节。其中白细胞介素4诱导蛋白1 (IL-4I1)作为一种重要的神经系统细胞因子,逐渐引起了研究者的关注。IL-4I1不仅参与肿瘤微环境的调节,还可能影响肿瘤细胞的增殖、存活和迁移等过程,在神经胶质瘤的发生与发展中发挥重要作用。目前的研究表明,IL-4I1通过多条信号通路影响神经胶质瘤的生物学特性,但其具体机制还未有明确说明。因此,通过影响IL-4I1的表达为神经胶质瘤的治疗提供了新的思路。本文旨在综述IL-4I1在神经胶质瘤中的作用机制、相关信号通路以及其在临床应用中的前景,为研究人员提供关于IL-4I1在这一领域的最新进展和未来研究方向。
Glioma is a common and highly aggressive neurologic tumor with a poor prognosis and high recurrence rate due to its rapid growth, extensive invasion of adjacent brain tissues, pseudonecrosis and induction of angiogenesis, and no obvious target, and its occurrence and progression are regulated by a variety of cytokines. Among them, interleukin 4-inducible protein 1 (IL-4I1), as an important nervous system cytokine, has gradually attracted the attention of researchers. IL-4I1 is not only involved in the regulation of tumor microenvironment, but also may affect the proliferation, survival and migration of tumor cells, and plays an important role in the occurrence and development of glioma. Current studies have shown that IL-4I1 affects the biology of glioma through multiple signaling pathways, but the specific mechanism of IL-4I1 has not been clearly explained. Therefore, by affecting the expression of IL-4I1, it provides a new idea for the treatment of glioma. The purpose of this article is to review the mechanism of IL-4I1 in glioma, related signaling pathways, and its prospects for clinical application, and to provide researchers with the latest progress and future research directions of IL-4I1 in this field.
[1] | Wu, D. and Wang, C. (2020) MiR-155 Regulates the Proliferation of Glioma Cells through PI3K/AKT Signaling. Frontiers in Neurology, 11, Article 297. https://doi.org/10.3389/fneur.2020.00297 |
[2] | Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251. https://doi.org/10.1093/neuonc/noab106 |
[3] | Liu, H., Tang, R. and Qi, R. (2019) Interleukin-4 Affects Microglial Autophagic Flux. Neural Regeneration Research, 14, 1594-1602. https://doi.org/10.4103/1673-5374.255975 |
[4] | Ye, F., Wang, L., Li, Y., Dong, C., Zhou, L. and Xu, J. (2024) IL4I1 in M2-Like Macrophage Promotes Glioma Progression and Is a Promising Target for Immunotherapy. Frontiers in Immunology, 14, Article 1338244. https://doi.org/10.3389/fimmu.2023.1338244 |
[5] | Qian, M., Wang, S., Guo, X., Wang, J., Zhang, Z., Qiu, W., et al. (2020) Hypoxic Glioma-Derived Exosomes Deliver MicroRNA-1246 to Induce M2 Macrophage Polarization by Targeting TERF2IP via the STAT3 and NF-κB Pathways. Oncogene, 39, 428-442. https://doi.org/10.1038/s41388-019-0996-y |
[6] | Sadik, A., Somarribas Patterson, L.F., Öztürk, S., Mohapatra, S.R., Panitz, V., Secker, P.F., et al. (2020) IL4I1 Is a Metabolic Immune Checkpoint That Activates the AHR and Promotes Tumor Progression. Cell, 182, 1252-1270.e34. https://doi.org/10.1016/j.cell.2020.07.038 |
[7] | Zemba, M., Ionescu, M.A., Pîrvulescu, R.A., et al. (2023) Biomarkers of Ocular Allergy and Dry Eye Disease. Romanian Journal of Ophthalmology., 67, 250-259. https://doi.org/10.22336/rjo.2023.42 |
[8] | Hofer, L.S., Mariotto, S., Wurth, S., Ferrari, S., Mancinelli, C.R., Delogu, R., et al. (2019) Distinct Serum and Cerebrospinal Fluid Cytokine and Chemokine Profiles in Autoantibody-Associated Demyelinating Diseases. Multiple Sclerosis Journal—Experimental, Translational and Clinical, 5. https://doi.org/10.1177/2055217319848463 |
[9] | Jing, T., Liao, J., Shen, K., Chen, X., Xu, Z., Tian, W., et al. (2019) Protective Effect of Urolithin a on Cisplatin-Induced Nephrotoxicity in Mice via Modulation of Inflammation and Oxidative Stress. Food and Chemical Toxicology, 129, 108-114. https://doi.org/10.1016/j.fct.2019.04.031 |
[10] | Chai, N., Stachon, T., Berger, T., Li, Z., Amini, M., Suiwal, S., et al. (2024) Rose Bengal Photodynamic Therapy (RB-PDT) Modulates the Inflammatory Response in LPS-Stimulated Human Corneal Fibroblasts by Influencing NF-κB and P38 MAPK Signaling Pathways. Current Eye Research, 49, 803-814. https://doi.org/10.1080/02713683.2024.2342600 |
[11] | Zeitler, L. and Murray, P.J. (2023) IL4i1 and IDO1: Oxidases That Control a Tryptophan Metabolic Nexus in Cancer. Journal of Biological Chemistry, 299, Article 104827. https://doi.org/10.1016/j.jbc.2023.104827 |
[12] | Cousin, C., Aubatin, A., Le Gouvello, S., Apetoh, L., Castellano, F. and Molinier‐Frenkel, V. (2015) The Immunosuppressive Enzyme IL4I1 Promotes FoxP3+ Regulatory T Lymphocyte Differentiation. European Journal of Immunology, 45, 1772-1782. https://doi.org/10.1002/eji.201445000 |
[13] | Run, L., Tian, Z., Xu, L., Du, J., Li, N., Wang, Q., et al. (2023) Knockdown of IL4I1 Improved High Glucose-Evoked Insulin Resistance in HepG2 Cells by Alleviating Inflammation and Lipotoxicity through AHR Activation. Applied Biochemistry and Biotechnology, 195, 6694-6707. https://doi.org/10.1007/s12010-023-04399-9 |
[14] | Yu, J., Long, B., Li, Z., Tian, X., Li, D., Long, J., et al. (2024) Central Memory CD4+ T Cells Play a Protective Role against Immune Checkpoint Inhibitor-Associated Myocarditis. Cardiovascular Research, 120, 1442-1455. https://doi.org/10.1093/cvr/cvae133 |
[15] | Ramspott, J.P., Bekkat, F., Bod, L., Favier, M., Terris, B., Salomon, A., et al. (2018) Emerging Role of Il-4-Induced Gene 1 as a Prognostic Biomarker Affecting the Local T-Cell Response in Human Cutaneous Melanoma. Journal of Investigative Dermatology, 138, 2625-2634. https://doi.org/10.1016/j.jid.2018.06.178 |
[16] | Yan, P., Wang, J., Liu, H., Liu, X., Fu, R. and Feng, J. (2023) M1 Macrophage-Derived Exosomes Containing MiR-150 Inhibit Glioma Progression by Targeting MMP16. Cellular Signalling, 108, Article 110731. https://doi.org/10.1016/j.cellsig.2023.110731 |
[17] | Zhou, W., Ke, S.Q., Huang, Z., Flavahan, W., Fang, X., Paul, J., et al. (2015) Periostin Secreted by Glioblastoma Stem Cells Recruits M2 Tumour-Associated Macrophages and Promotes Malignant Growth. Nature Cell Biology, 17, 170-182. https://doi.org/10.1038/ncb3090 |
[18] | Liu, L., Cheng, M., Zhang, T., Chen, Y., Wu, Y. and Wang, Q. (2022) Mesenchymal Stem Cell-Derived Extracellular Vesicles Prevent Glioma by Blocking M2 Polarization of Macrophages through a miR-744-5p/TGFB1-Dependent Mechanism. Cell Biology and Toxicology, 38, 649-665. https://doi.org/10.1007/s10565-021-09652-7 |
[19] | Wu, J., Yang, H., Cheng, J., Zhang, L., Ke, Y., Zhu, Y., et al. (2020) Knockdown of Milk‐Fat Globule EGF Factor‐8 Suppresses Glioma Progression in GL261 Glioma Cells by Repressing Microglial M2 Polarization. Journal of Cellular Physiology, 235, 8679-8690. https://doi.org/10.1002/jcp.29712 |
[20] | Hlaka, L., Ozturk, M., Chia, J.E., Jones, S., Pillay, S., Poswayo, S.K.L., et al. (2021) IL-4I1 Regulation of Immune Protection during Mycobacterium tuberculosis Infection. The Journal of Infectious Diseases, 224, 2170-2180. https://doi.org/10.1093/infdis/jiab558 |
[21] | Ermakov, M.S., Nushtaeva, A.A., Richter, V.A. and Koval, O.A. (2022) Cancer-Associated Fibroblasts and Their Role in Tumor Progression. Vavilov Journal of Genetics and Breeding, 26, 14-21. https://doi.org/10.18699/vjgb-22-03 |
[22] | Huo, H., Yang, S., Wu, H., Sun, Y., Zhao, R., Ye, R., et al. (2021) Brain Endothelial Cells‐Derived Extracellular Vesicles Overexpressing ECRG4 Inhibit Glioma Proliferation through Suppressing Inflammation and Angiogenesis. Journal of Tissue Engineering and Regenerative Medicine, 15, 1162-1171. Https://doi.org/10.1002/term.3244 |
[23] | Pandey, G. (2020) Tumor-Associated Macrophages in Solid Tumor: Friend or Foe. Annals of Translational Medicine, 8, 1027-1027. https://doi.org/10.21037/atm-2020-tam-05 |
[24] | 胡婉明. 胶质瘤分子数据库的建立及免疫相关分子IL4I1与LGALS3对胶质瘤发生发展的作用与机制研究[D]: [博士学位论文]. 广州: 南方医科大学, 2020. |
[25] | Castellano, F., Prevost-Blondel, A., Cohen, J.L. and Molinier-Frenkel, V. (2021) What Role for AHR Activation in Il4i1-Mediated Immunosuppression? OncoImmunology, 10, e1924500. https://doi.org/10.1080/2162402x.2021.1924500 |
[26] | Noy, R. and Pollard, J.W. (2014) Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 41, 49-61. https://doi.org/10.1016/j.immuni.2014.06.010 |
[27] | Grégoire, H., Roncali, L., Rousseau, A., Chérel, M., Delneste, Y., Jeannin, P., et al. (2020) Targeting Tumor Associated Macrophages to Overcome Conventional Treatment Resistance in Glioblastoma. Frontiers in Pharmacology, 11, Article 368. https://doi.org/10.3389/fphar.2020.00368 |