全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生物材料力学特性调控巨噬细胞极化的研究进展
Advances in Biomaterial Mechanical Properties to Regulate Macrophage Polarization

DOI: 10.12677/jcpm.2025.42244, PP. 792-799

Keywords: 力学特性,巨噬细胞,极化
Mechanical Properties
, Macrophage, Polarization

Full-Text   Cite this paper   Add to My Lib

Abstract:

生物材料植入后引发的炎症反应已成为组织再生领域面临的关键科学问题。巨噬细胞作为早期到达植入物–组织界面的核心免疫调控因子,其功能输出对材料的预后至关重要。值得注意的是,巨噬细胞具有高度的力学响应特性,能够精确响应微环境中力学信号并呈现出不同的表型和功能。本文系统综述了材料硬度、表面拓扑结构和粘弹性等可调控力学参数对巨噬细胞极化的调控作用及力学–生物学信号转导机制。为基于力学调控的免疫治疗策略及新一代医用植入器械开发提供了理论依据。
The inflammatory response induced by biomaterial implantation has emerged as a critical scientific challenge in the field of tissue regeneration. As the primary immune regulatory factors that first arrive at the implant-tissue interface, macrophages critically determine clinical outcomes through their dynamic functional polarization. Significantly, macrophages exhibit remarkable mechanoresponsive properties that allow them to decode microenvironmental mechanical signals, leading to distinct phenotypic adaptations and functional reprogramming. This article systematically reviews the regulatory effects of tunable mechanical parameters—including material stiffness, surface topography, and viscoelasticity—on macrophage polarization, along with their underlying mechano-biological signal transduction mechanisms. These findings provide a theoretical framework for developing mechanics-based immunotherapeutic strategies and designing next-generation medical implantable devices.

References

[1]  Witherel, C.E., Abebayehu, D., Barker, T.H. and Spiller, K.L. (2019) Macrophage and Fibroblast Interactions in Biomaterial‐Mediated Fibrosis. Advanced Healthcare Materials, 8, e1801451.
https://doi.org/10.1002/adhm.201801451
[2]  Abaricia, J.O., Shah, A.H., Chaubal, M., Hotchkiss, K.M. and Olivares-Navarrete, R. (2020) Wnt Signaling Modulates Macrophage Polarization and Is Regulated by Biomaterial Surface Properties. Biomaterials, 243, Article ID: 119920.
https://doi.org/10.1016/j.biomaterials.2020.119920
[3]  Amani, H., Alipour, M., Shahriari, E. and Taboas, J.M. (2024) Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Advanced Healthcare Materials, 13, e2401253.
https://doi.org/10.1002/adhm.202401253
[4]  Sica, A. and Mantovani, A. (2012) Macrophage Plasticity and Polarization: In Vivo Veritas. Journal of Clinical Investigation, 122, 787-795.
https://doi.org/10.1172/jci59643
[5]  Shapouri‐Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S., Mardani, F., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440.
https://doi.org/10.1002/jcp.26429
[6]  Li, J., Jiang, X., Li, H., Gelinsky, M. and Gu, Z. (2021) Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 33, e2004172.
https://doi.org/10.1002/adma.202004172
[7]  Rayahin, J.E. and Gemeinhart, R.A. (2017) Activation of Macrophages in Response to Biomaterials. In: Kloc, M., Ed., Macrophages: Origin, Functions and Biointervention, Springer International Publishing, 317-351.
https://doi.org/10.1007/978-3-319-54090-0_13
[8]  Anderson, J.M., Rodriguez, A. and Chang, D.T. (2008) Foreign Body Reaction to Biomaterials. Seminars in Immunology, 20, 86-100.
https://doi.org/10.1016/j.smim.2007.11.004
[9]  Liu, K., Dong, X., Wang, Y., Wu, X. and Dai, H. (2022) Dopamine-Modified Chitosan Hydrogel for Spinal Cord Injury. Carbohydrate Polymers, 298, Article ID: 120047.
https://doi.org/10.1016/j.carbpol.2022.120047
[10]  Zhou, Z., Deng, T., Tao, M., Lin, L., Sun, L., Song, X., et al. (2023) Snail-Inspired AFG/GelMA Hydrogel Accelerates Diabetic Wound Healing via Inflammatory Cytokines Suppression and Macrophage Polarization. Biomaterials, 299, Article ID: 122141.
https://doi.org/10.1016/j.biomaterials.2023.122141
[11]  Liu, X., Wan, X., Sui, B., Hu, Q., Liu, Z., Ding, T., et al. (2024) Piezoelectric Hydrogel for Treatment of Periodontitis through Bioenergetic Activation. Bioactive Materials, 35, 346-361.
https://doi.org/10.1016/j.bioactmat.2024.02.011
[12]  Adams, S., Wuescher, L.M., Worth, R. and Yildirim-Ayan, E. (2019) Mechano-Immunomodulation: Mechanoresponsive Changes in Macrophage Activity and Polarization. Annals of Biomedical Engineering, 47, 2213-2231.
https://doi.org/10.1007/s10439-019-02302-4
[13]  Sridharan, R., Cavanagh, B., Cameron, A.R., Kelly, D.J. and O’Brien, F.J. (2019) Material Stiffness Influences the Polarization State, Function and Migration Mode of Macrophages. Acta Biomaterialia, 89, 47-59.
https://doi.org/10.1016/j.actbio.2019.02.048
[14]  Liu, X., Chen, X., Liu, Z., Gu, S., He, L., Wang, K., et al. (2020) Biomimetic Matrix Stiffness Modulates Hepatocellular Carcinoma Malignant Phenotypes and Macrophage Polarization through Multiple Modes of Mechanical Feedbacks. ACS Biomaterials Science & Engineering, 6, 3994-4004.
https://doi.org/10.1021/acsbiomaterials.0c00669
[15]  Tang, Z., Wei, X., Li, T., Wu, H., Xiao, X., Hao, Y., et al. (2021) Three-Dimensionally Printed Ti2448 with Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis. Frontiers in Cell and Developmental Biology, 9, Article ID: 750948.
https://doi.org/10.3389/fcell.2021.750948
[16]  Camarero‐Espinosa, S., Carlos‐Oliveira, M., Liu, H., Mano, J.F., Bouvy, N. and Moroni, L. (2021) 3D Printed Dual‐porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials, 11, e2101415.
https://doi.org/10.1002/adhm.202101415
[17]  Hotchkiss, K.M., Reddy, G.B., Hyzy, S.L., Schwartz, Z., Boyan, B.D. and Olivares-Navarrete, R. (2016) Titanium Surface Characteristics, Including Topography and Wettability, Alter Macrophage Activation. Acta Biomaterialia, 31, 425-434.
https://doi.org/10.1016/j.actbio.2015.12.003
[18]  Tang, D., Han, B., He, C., Xu, Y., Liu, Z., Wang, W., et al. (2024) Electrospun Poly‐L‐Lactic Acid Membranes Promote M2 Macrophage Polarization by Regulating the PCK2/AMPK/mTOR Signaling Pathway. Advanced Healthcare Materials, 13, e2400481.
https://doi.org/10.1002/adhm.202400481
[19]  Ni, S., Zhai, D., Huan, Z., Zhang, T., Chang, J. and Wu, C. (2020) Nanosized Concave Pit/Convex Dot Microarray for Immunomodulatory Osteogenesis and Angiogenesis. Nanoscale, 12, 16474-16488.
https://doi.org/10.1039/d0nr03886e
[20]  Jia, Y., Yang, W., Zhang, K., Qiu, S., Xu, J., Wang, C., et al. (2019) Nanofiber Arrangement Regulates Peripheral Nerve Regeneration through Differential Modulation of Macrophage Phenotypes. Acta Biomaterialia, 83, 291-301.
https://doi.org/10.1016/j.actbio.2018.10.040
[21]  Yang, X., Gao, J., Yang, S., Wu, Y., Liu, H., Su, D., et al. (2023) Pore Size-Mediated Macrophage M1 to M2 Transition Affects Osseointegration of 3D-Printed PEEK Scaffolds. International Journal of Bioprinting, 9, Article No. 755.
https://doi.org/10.18063/ijb.755
[22]  Chaudhuri, O., Cooper-White, J., Janmey, P.A., Mooney, D.J. and Shenoy, V.B. (2020) Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature, 584, 535-546.
https://doi.org/10.1038/s41586-020-2612-2
[23]  Kalashnikov, N. and Moraes, C. (2023) Substrate Viscoelasticity Affects Human Macrophage Morphology and Phagocytosis. Soft Matter, 19, 2438-2445.
https://doi.org/10.1039/d2sm01683d
[24]  Fang, J.Y., Yang, Z., Hu, W., Hoang, B.X. and Han, B. (2024) Viscoelastic Hydrogel Modulates Phenotype of Macrophage‐Derived Multinucleated Cells and Macrophage Differentiation in Foreign Body Reactions. Journal of Biomedical Materials Research Part A, 113, e37814.
https://doi.org/10.1002/jbm.a.37814
[25]  Liu, L., Huang, T., Xie, Z., Ye, Z., Zhang, J., Liao, H., et al. (2023) Liquid Crystalline Matrix-Induced Viscoelastic Mechanical Stimulation Modulates Activation and Phenotypes of Macrophage. Journal of Biomaterials Applications, 37, 1568-1581.
https://doi.org/10.1177/08853282221136580
[26]  Zhou, Y. and Wu, Y. (2021) Substrate Viscoelasticity Amplifies Distinctions between Transient and Persistent LPS‐induced Signals. Advanced Healthcare Materials, 11, e2102271.
https://doi.org/10.1002/adhm.202102271
[27]  Atcha, H., Jairaman, A., Evans, E.L., Pathak, M.M., Cahalan, M.D. and Liu, W.F. (2021) Ion Channel Mediated Mechanotransduction in Immune Cells. Current Opinion in Solid State and Materials Science, 25, Article ID: 100951.
https://doi.org/10.1016/j.cossms.2021.100951
[28]  Atcha, H., Jairaman, A., Holt, J.R., Meli, V.S., Nagalla, R.R., Veerasubramanian, P.K., et al. (2021) Mechanically Activated Ion Channel Piezo1 Modulates Macrophage Polarization and Stiffness Sensing. Nature Communications, 12, Article No. 3256.
https://doi.org/10.1038/s41467-021-23482-5
[29]  Yang, Z., Zhao, Y., Zhang, X., Huang, L., Wang, K., Sun, J., et al. (2024) Nano-Mechanical Immunoengineering: Nanoparticle Elasticity Reprograms Tumor-Associated Macrophages via Piezo1. ACS Nano, 18, 21221-21235.
https://doi.org/10.1021/acsnano.4c04614
[30]  Song, J., Liu, K., Mei, J., Wang, L., Lin, J., Du, P., et al. (2023) Defined Surface Physicochemical Cues Inhibit M1 Polarization of Human Macrophages Using Colloidal Self-Assembled Patterns. ACS Applied Materials & Interfaces, 15, 35832-35846.
https://doi.org/10.1021/acsami.3c04692
[31]  Liu, Y., An, Y., Li, G. and Wang, S. (2023) Regulatory Mechanism of Macrophage Polarization Based on Hippo Pathway. Frontiers in Immunology, 14, Article ID: 1279591.
https://doi.org/10.3389/fimmu.2023.1279591
[32]  Liu, X., Yuan, Y., Wu, Y., Zhu, C., Liu, Y. and Ke, B. (2025) Extracellular Matrix Stiffness Modulates Myopia Scleral Remodeling through Integrin/F-Actin/YAP Axis. Investigative Ophthalmology & Visual Science, 66, Article No. 22.
https://doi.org/10.1167/iovs.66.2.22
[33]  Meli, V.S., Atcha, H., Veerasubramanian, P.K., Nagalla, R.R., Luu, T.U., Chen, E.Y., et al. (2020) YAP-Mediated Mechanotransduction Tunes the Macrophage Inflammatory Response. Science Advances, 6, eabb8471.
https://doi.org/10.1126/sciadv.abb8471
[34]  Mei, F., Guo, Y., Wang, Y., Zhou, Y., Heng, B.C., Xie, M., et al. (2024) Matrix Stiffness Regulates Macrophage Polarisation via the Piezo1‐YAP Signalling Axis. Cell Proliferation, 57, e13640.
https://doi.org/10.1111/cpr.13640
[35]  Kanchanawong, P. and Calderwood, D.A. (2022) Organization, Dynamics and Mechanoregulation of Integrin-Mediated Cell-ECM Adhesions. Nature Reviews Molecular Cell Biology, 24, 142-161.
https://doi.org/10.1038/s41580-022-00531-5
[36]  Liu, H., Wu, Q., Liu, S., Liu, L., He, Z., Liu, Y., et al. (2024) The Role of Integrin αvβ3 in Biphasic Calcium Phosphate Ceramics Mediated M2 Macrophage Polarization and the Resultant Osteoinduction. Biomaterials, 304, Article ID: 122406.
https://doi.org/10.1016/j.biomaterials.2023.122406
[37]  Ronzier, E., Laurenson, A.J., Manickam, R., Liu, S., Saintilma, I.M., Schrock, D.C., et al. (2022) The Actin Cytoskeleton Responds to Inflammatory Cues and Alters Macrophage Activation. Cells, 11, Article No. 1806.
https://doi.org/10.3390/cells11111806
[38]  Liu, H., Zhu, L., Dudiki, T., Gabanic, B., Good, L., Podrez, E.A., et al. (2020) Macrophage Migration and Phagocytosis Are Controlled by Kindlin-3’s Link to the Cytoskeleton. The Journal of Immunology, 204, 1954-1967.
https://doi.org/10.4049/jimmunol.1901134
[39]  Fu, Z., Hou, Y., Haugen, H.J., Chen, X., Tang, K., Fang, L., et al. (2023) TiO2 Nanostructured Implant Surface-Mediated M2c Polarization of Inflammatory Monocyte Requiring Intact Cytoskeleton Rearrangement. Journal of Nanobiotechnology, 21, Article No. 1.
https://doi.org/10.1186/s12951-022-01751-9
[40]  Balamurli, G., Liew, A.Q.X., Tee, W.W. and Pervaiz, S. (2024) Interplay between Epigenetics, Senescence and Cellular Redox Metabolism in Cancer and Its Therapeutic Implications. Redox Biology, 78, Article ID: 103441.
https://doi.org/10.1016/j.redox.2024.103441
[41]  Sun, H., Gao, Y., Ma, X., Deng, Y., Bi, L. and Li, L. (2024) Mechanism and Application of Feedback Loops Formed by Mechanotransduction and Histone Modifications. Genes & Diseases, 11, Article ID: 101061.
https://doi.org/10.1016/j.gendis.2023.06.030
[42]  Jain, N. and Vogel, V. (2018) Spatial Confinement Downsizes the Inflammatory Response of Macrophages. Nature Materials, 17, 1134-1144.
https://doi.org/10.1038/s41563-018-0190-6
[43]  Chu, Q., Han, W., He, Z., Hao, L. and Fu, X. (2023) Suppression of LPS‐Activated Inflammatory Responses and Chromosomal Histone Modifications in Macrophages by Micropattern‐Induced Nuclear Deformation. Journal of Biomedical Materials Research Part A, 112, 250-259.
https://doi.org/10.1002/jbm.a.37617
[44]  Wang, Y., Groeger, S., Yong, J. and Ruf, S. (2023) Orthodontic Compression Enhances Macrophage M2 Polarization via Histone H3 Hyperacetylation. International Journal of Molecular Sciences, 24, Article No. 3117.
https://doi.org/10.3390/ijms24043117
[45]  He, Y., Xu, K., Li, K., Yuan, Z., Ding, Y., Chen, M., et al. (2020) Improved Osteointegration by SEW2871-Encapsulated Multilayers on Micro-Structured Titanium via Macrophages Recruitment and Immunomodulation. Applied Materials Today, 20, Article ID: 100673.
https://doi.org/10.1016/j.apmt.2020.100673
[46]  Tharp, K.M., Kersten, K., Maller, O., Timblin, G.A., Stashko, C., Canale, F.P., et al. (2024) Tumor-Associated Macrophages Restrict CD8+ T Cell Function through Collagen Deposition and Metabolic Reprogramming of the Breast Cancer Microenvironment. Nature Cancer, 5, 1045-1062.
https://doi.org/10.1038/s43018-024-00775-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133