|
免疫细胞介导的皮肌炎与肺癌之间的因果关系:一项中介孟德尔随机化研究
|
Abstract:
目的:通过双向两样本MR方法探讨皮肌炎(Dermatomyositis, DM)、免疫细胞与肺癌(Lung cancer, LC)之间的因果关系,验证免疫细胞在其中起到的中介作用。方法:使用双向双样本孟德尔随机化(Mendelian Randomization, MR)法分析DM与LC及其各种亚型的因果关系,通过两步法MR探讨免疫细胞在DM与LC及各种亚型之间是否起到中介作用。使用MR-Egger截距法和MR-PRESSO法检查有无水平多效性,Cochran’s Q检查有无异质性。结果:根据MR分析结果,DM会增加患小细胞肺癌(Small cell lung cancer, SCLC)和肺腺癌(Lung adenocarcinoma, LUAD)的风险。38种免疫细胞表型与LC密切相关。其中,效应记忆CD8+ T细胞在CD8+ T细胞中所占的百分比、静息CD4调节性T细胞上CD25的表达水平、IgD? CD38+ B细胞的绝对计数、效应记忆CD8+ T细胞在T细胞中所占的百分比,以及CD33+ HLA-DR+ CD14低表达细胞上CD45的表达水平,都参与介导了DM与LUAD以及小细胞肺癌SCLC之间的因果关系。结论:我们的研究结果表明,DM患者并发LUAD和SCLC发生风险将显著增加。此外,我们发现五种免疫细胞性状(效应记忆CD8+ T细胞在CD8+ T细胞中所占的百分比、静息CD4调节性T细胞上CD25的表达水平、IgD? CD38+ B细胞的绝对计数、效应记忆CD8+ T细胞在T细胞中所占的百分比,以及CD33+ HLA-DR+ CD14低表达细胞上CD45的表达水平)在DM患者并发LC中的发病过程中起到重要作用。针对这些免疫细胞性状的深入研究将进一步明确DM导致LC风险升高的病理生理机制。
Objective: To explore the causal relationships among dermatomyositis (DM), immune cells, and lung cancer (LC) through the bidirectional two-sample Mendelian randomization (MR) method, and to verify the mediating role of immune cells in this process. Methods: The bidirectional two-sample Mendelian randomization (MR) method was used to analyze the causal relationships between DM and LC as well as its various subtypes. The two-step MR method was applied to explore whether immune cells played a mediating role between DM and LC and its various subtypes. The MR-Egger intercept method and the MR-PRESSO method were used to check for horizontal pleiotropy, and Cochran’s Q test was used to check for heterogeneity. Results: According to the results of the MR analysis, DM increases the risk of developing small cell lung cancer (SCLC) and lung adenocarcinoma (LUAD). 38 immune cell characteristics were closely related to LC. Among them, the percentage of effector memory CD8+ T cells in CD8+ T cells, the expression level of CD25 on resting CD4 regulatory T cells, the absolute count of IgD? CD38+ B cells, the percentage of effector memory CD8+ T cells in T cells, and the expression level of CD45 on CD33+ HLA-DR+ CD14 low-expression cells all participated in mediating the causal relationships between DM and LUAD as well as SCLC. Conclusion: Our research results indicate that the risk of developing LUAD and SCLC in patients with DM will increase significantly. In addition, we found that five immune cell traits (the percentage of effector memory CD8+ T cells in CD8+ T cells, the expression level of CD25 on resting CD4 regulatory T cells, the absolute count of IgD? CD38+ B cells, the
[1] | Sasaki, H. and Kohsaka, H. (2018) Current Diagnosis and Treatment of Polymyositis and Dermatomyositis. Modern Rheumatology, 28, 913-921. https://doi.org/10.1080/14397595.2018.1467257 |
[2] | Kamperman, R.G., van der Kooi, A.J., de Visser, M., Aronica, E. and Raaphorst, J. (2022) Pathophysiological Mechanisms and Treatment of Dermatomyositis and Immune Mediated Necrotizing Myopathies: A Focused Review. International Journal of Molecular Sciences, 23, Article No. 4301. https://doi.org/10.3390/ijms23084301 |
[3] | Dobloug, G.C., Svensson, J., Lundberg, I.E. and Holmqvist, M. (2018) Mortality in Idiopathic Inflammatory Myopathy: Results from a Swedish Nationwide Population-Based Cohort Study. Annals of the Rheumatic Diseases, 77, 40-47. https://doi.org/10.1136/annrheumdis-2017-211402 |
[4] | Hill, C.L., Zhang, Y., Sigurgeirsson, B., Pukkala, E., Mellemkjaer, L., Airio, A., et al. (2001) Frequency of Specific Cancer Types in Dermatomyositis and Polymyositis: A Population-Based Study. The Lancet, 357, 96-100. https://doi.org/10.1016/s0140-6736(00)03540-6 |
[5] | Oldroyd, A.G.S., Allard, A.B., Callen, J.P., Chinoy, H., Chung, L., Fiorentino, D., et al. (2021) A Systematic Review and Meta-Analysis to Inform Cancer Screening Guidelines in Idiopathic Inflammatory Myopathies. Rheumatology, 60, 2615-2628. https://doi.org/10.1093/rheumatology/keab166 |
[6] | Chang, L., Zhang, L., Jia, H., Nie, Z. and Zhang, L. (2020) Malignancy in Dermatomyositis: A Retrospective Paired Case-Control Study of 202 Patients from Central China. Medicine, 99, e21733. https://doi.org/10.1097/md.0000000000021733 |
[7] | Strunz, P. and Schmalzing, M. (2023) Paraneoplastische Syndrome in der Rheumatologie. Zeitschrift für Rheumatologie, 82, 212-219. https://doi.org/10.1007/s00393-022-01314-1 |
[8] | Abbott, M. and Ustoyev, Y. (2019) Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 35, Article ID: 150923. https://doi.org/10.1016/j.soncn.2019.08.002 |
[9] | Guerra, N.L., Matas-García, A., Serra-García, L., Morgado-Carrasco, D., Padrosa, J., Aldecoa, I., et al. (2023) Dermatomyositis Unleashed by Immune Checkpoint Inhibitors. Three Additional Cases and a Review of the Literature. Autoimmunity Reviews, 22, Article ID: 103375. https://doi.org/10.1016/j.autrev.2023.103375 |
[10] | Birney, E. (2021) Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 12, a041302. https://doi.org/10.1101/cshperspect.a041302 |
[11] | Sekula, P., Del Greco M, F., Pattaro, C. and Köttgen, A. (2016) Mendelian Randomization as an Approach to Assess Causality Using Observational Data. Journal of the American Society of Nephrology, 27, 3253-3265. https://doi.org/10.1681/asn.2016010098 |
[12] | Davey Smith, G. and Ebrahim, S. (2003) “Mendelian Randomization”: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? International Journal of Epidemiology, 32, 1-22. https://doi.org/10.1093/ije/dyg070 |
[13] | McKay, J.D., Hung, R.J., Han, Y., Zong, X., Carreras-Torres, R., Christiani, D.C., et al. (2017) Large-Scale Association Analysis Identifies New Lung Cancer Susceptibility Loci and Heterogeneity in Genetic Susceptibility across Histological Subtypes. Nature Genetics, 49, 1126-1132. https://doi.org/10.1038/ng.3892 |
[14] | Orrù, V., Steri, M., Sidore, C., Marongiu, M., Serra, V., Olla, S., et al. (2020) Author Correction: Complex Genetic Signatures in Immune Cells Underlie Autoimmunity and Inform Therapy. Nature Genetics, 52, 1266-1266. https://doi.org/10.1038/s41588-020-00718-6 |
[15] | Burgess, S. and Thompson, S.G. (2011) Avoiding Bias from Weak Instruments in Mendelian Randomization Studies. International Journal of Epidemiology, 40, 755-764. https://doi.org/10.1093/ije/dyr036 |
[16] | Bowden, J. and Holmes, M.V. (2019) Meta‐Analysis Andmendelianrandomization: A Review. Research Synthesis Methods, 10, 486-496. https://doi.org/10.1002/jrsm.1346 |
[17] | Burgess, S. and Thompson, S.G. (2017) Erratum to: Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 391-392. https://doi.org/10.1007/s10654-017-0276-5 |
[18] | Carter, A.R., Sanderson, E., Hammerton, G., Richmond, R.C., Davey Smith, G., Heron, J., et al. (2021) Mendelian Randomisation for Mediation Analysis: Current Methods and Challenges for Implementation. European Journal of Epidemiology, 36, 465-478. https://doi.org/10.1007/s10654-021-00757-1 |
[19] | Jakubaszek, M., Kwiatkowska, B. and Maślińska, M. (2015) Polymyositis and Dermatomyositis as a Risk of Developing Cancer. Rheumatology, 53, 101-105. https://doi.org/10.5114/reum.2015.51510 |
[20] | Zhou, B., Li, S., Xie, X., Xu, S., Li, F. and Long, L. (2023) Clinical Features and Risk Factors of Lung Cancer in Elderly Patients with Dermatomyositis. Thoracic Cancer, 14, 1171-1178. https://doi.org/10.1111/1759-7714.14849 |
[21] | Liu, Y., Xu, L., Wu, H., Zhao, N., Tang, Y., Li, X., et al. (2018) Characteristics and Predictors of Malignancy in Dermatomyositis: Analysis of 239 Patients from Northern China. Oncology Letters, 16, 5960-5968. https://doi.org/10.3892/ol.2018.9409 |
[22] | Pollard, K.M., Cauvi, D.M., Mayeux, J.M., Toomey, C.B., Peiss, A.K., Hultman, P., et al. (2021) Mechanisms of Environment-Induced Autoimmunity. Annual Review of Pharmacology and Toxicology, 61, 135-157. https://doi.org/10.1146/annurev-pharmtox-031320-111453 |
[23] | Gebhardt, T., Park, S.L. and Parish, I.A. (2023) Stem-Like Exhausted and Memory CD8+ T Cells in Cancer. Nature Reviews Cancer, 23, 780-798. https://doi.org/10.1038/s41568-023-00615-0 |
[24] | Yang, Y. (2015) Cancer Immunotherapy: Harnessing the Immune System to Battle Cancer. Journal of Clinical Investigation, 125, 3335-3337. https://doi.org/10.1172/jci83871 |
[25] | Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J.M., Robert, L., et al. (2014) PD-1 Blockade Induces Responses by Inhibiting Adaptive Immune Resistance. Nature, 515, 568-571. https://doi.org/10.1038/nature13954 |
[26] | Radziszewska, A., Moulder, Z., Jury, E.C. and Ciurtin, C. (2022) CD8+ T Cell Phenotype and Function in Childhood and Adult-Onset Connective Tissue Disease. International Journal of Molecular Sciences, 23, Article No. 11431. https://doi.org/10.3390/ijms231911431 |
[27] | Lugli, E., Galletti, G., Boi, S.K. and Youngblood, B.A. (2020) Stem, Effector, and Hybrid States of Memory CD8+ T Cells. Trends in Immunology, 41, 17-28. https://doi.org/10.1016/j.it.2019.11.004 |
[28] | Wu, T.D., Madireddi, S., de Almeida, P.E., Banchereau, R., Chen, Y.J., Chitre, A.S., et al. (2020) Peripheral T Cell Expansion Predicts Tumour Infiltration and Clinical Response. Nature, 579, 274-278. https://doi.org/10.1038/s41586-020-2056-8 |
[29] | Chen, Z., Guo, M., Li, Y., Yan, K., Li, L., Shen, F., et al. (2022) Immune Profiling Identifies CD8+ T-Cell Subset Signatures as Prognostic Markers for Recurrence in Papillary Thyroid Cancer. Frontiers in Immunology, 13, Article ID: 894919. https://doi.org/10.3389/fimmu.2022.894919 |
[30] | Garrido-Martin, E.M., Mellows, T.W.P., Clarke, J., Ganesan, A., Wood, O., Cazaly, A., et al. (2020) M1hot Tumor-Associated Macrophages Boost Tissue-Resident Memory T Cells Infiltration and Survival in Human Lung Cancer. Journal for ImmunoTherapy of Cancer, 8, e000778. https://doi.org/10.1136/jitc-2020-000778 |
[31] | Liu, Y. and Sun, Z. (2021) Turning Cold Tumors into Hot Tumors by Improving T-Cell Infiltration. Theranostics, 11, 5365-5386. https://doi.org/10.7150/thno.58390 |
[32] | Shouse, A.N., LaPorte, K.M. and Malek, T.R. (2024) Interleukin-2 Signaling in the Regulation of T Cell Biology in Autoimmunity and Cancer. Immunity, 57, 414-428. https://doi.org/10.1016/j.immuni.2024.02.001 |
[33] | Costa, A., Kieffer, Y., Scholer-Dahirel, A., Pelon, F., Bourachot, B., Cardon, M., et al. (2018) Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell, 33, 463-479.e10. https://doi.org/10.1016/j.ccell.2018.01.011 |
[34] | Peng, Y., Tao, Y., Zhang, Y., Wang, J., Yang, J. and Wang, Y. (2022) cd25: A Potential Tumor Therapeutic Target. International Journal of Cancer, 152, 1290-1303. https://doi.org/10.1002/ijc.34281 |
[35] | Peng, L., Chen, L., Solt, L.A., Dominical, V.M. and Shen, Z. (2023) Editorial: Immunometabolism of T Cells in Skin Infection, Autoimmunity and Cancer Biology. Frontiers in Immunology, 14, Article ID: 1237386. https://doi.org/10.3389/fimmu.2023.1237386 |
[36] | Sun, W., Li, W., Fu, Q., Wu, C., Lin, J., Zhu, X., et al. (2014) Functionally Distinct Subsets of CD4+ Regulatory T Cells in Patients with Laryngeal Squamous Cell Carcinoma Are Indicative of Immune Deregulation and Disease Progression. Oncology Reports, 33, 354-362. https://doi.org/10.3892/or.2014.3553 |
[37] | Zeng, F., Zhang, J., Jin, X., Liao, Q., Chen, Z., Luo, G., et al. (2022) Effect of CD38 on B‐Cell Function and Its Role in the Diagnosis and Treatment of B-Cell‐Related Diseases. Journal of Cellular Physiology, 237, 2796-2807. https://doi.org/10.1002/jcp.30760 |
[38] | Zeidler, J.D., Hogan, K.A., Agorrody, G., Peclat, T.R., Kashyap, S., Kanamori, K.S., et al. (2022) The CD38 Glycohydrolase and the NAD Sink: Implications for Pathological Conditions. American Journal of Physiology-Cell Physiology, 322, C521-C545. https://doi.org/10.1152/ajpcell.00451.2021 |
[39] | Chini, C.C.S., Guerrico, A.M.G., Nin, V., Camacho-Pereira, J., Escande, C., Barbosa, M.T., et al. (2014) Targeting of NAD Metabolism in Pancreatic Cancer Cells: Potential Novel Therapy for Pancreatic Tumors. Clinical Cancer Research, 20, 120-130. https://doi.org/10.1158/1078-0432.ccr-13-0150 |
[40] | Taniguchi, H., Chavan, S.S., Chow, A., Chan, J.M., Mukae, H., Rudin, C.M., et al. (2024) Role of CD38 in Anti-Tumor Immunity of Small Cell Lung Cancer. Frontiers in Immunology, 15, Article ID: 1348982. https://doi.org/10.3389/fimmu.2024.1348982 |
[41] | Chen, L., Diao, L., Yang, Y., Yi, X., Rodriguez, B.L., Li, Y., et al. (2018) CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discovery, 8, 1156-1175. https://doi.org/10.1158/2159-8290.cd-17-1033 |
[42] | Hogan, K.A., Chini, C.C.S. and Chini, E.N. (2019) The Multi-Faceted Ecto-Enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases. Frontiers in Immunology, 10, Article No. 1187. https://doi.org/10.3389/fimmu.2019.01187 |
[43] | Hermiston, M.L., Xu, Z. and Weiss, A. (2003) CD45: A Critical Regulator of Signaling Thresholds in Immune Cells. Annual Review of Immunology, 21, 107-137. https://doi.org/10.1146/annurev.immunol.21.120601.140946 |
[44] | Hoseini, S.S. and Cheung, N.K. (2017) Erratum: Acute Myeloid Leukemia Targets for Bispecific Antibodies. Blood Cancer Journal, 7, e552-e552. https://doi.org/10.1038/bcj.2017.35 |
[45] | Huang, A., Zhang, B., Wang, B., Zhang, F., Fan, K. and Guo, Y. (2013) Increased CD14+HLA-DR−/Low Myeloid-Derived Suppressor Cells Correlate with Extrathoracic Metastasis and Poor Response to Chemotherapy in Non-Small Cell Lung Cancer Patients. Cancer Immunology, Immunotherapy, 62, 1439-1451. https://doi.org/10.1007/s00262-013-1450-6 |
[46] | Sharygin, D., Koniaris, L.G., Wells, C., Zimmers, T.A. and Hamidi, T. (2023) Role of CD14 in Human Disease. Immunology, 169, 260-270. https://doi.org/10.1111/imm.13634 |
[47] | Waldman, R., DeWane, M.E. and Lu, J. (2020) Dermatomyositis: Diagnosis and Treatment. Journal of the American Academy of Dermatology, 82, 283-296. https://doi.org/10.1016/j.jaad.2019.05.105 |