全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纸基压力传感器的研究进展与应用前景
Research Progress and Application Prospect of Paper-Based Pressure Sensor

DOI: 10.12677/ms.2025.154067, PP. 622-629

Keywords: 纸基压力传感器,柔性电子,可穿戴设备,医疗健康,环境监测
Paper-Based Pressure Sensors
, Flexible Electronics, Wearable Devices, Healthcare, Environmental Monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

本篇综述主要介绍了纸基压力传感器的研究进展与应用前景。纸基压力传感器作为一种新兴的柔性传感器,因其低成本、可降解、柔韧性好等优点而受到广泛关注。本文首先介绍了纸基压力传感器的基本概念和工作原理,然后详细阐述了纸基压力传感器的制备方法,包括材料选择、结构设计和制造工艺三个方面。接着,探讨了纸基压力传感器在可穿戴设备、医疗健康和环境监测等领域的应用。最后,分析了当前面临的挑战,并展望了未来的发展方向。研究表明,纸基压力传感器在柔性电子领域具有广阔的应用前景,但仍需在灵敏度、稳定性和大规模生产等方面进行进一步研究。
This paper reviews the research progress and application prospects of paper-based pressure sensors. As an emerging type of flexible sensor, paper-based pressure sensors have attracted widespread attention due to their advantages such as low cost, degradability, and good flexibility. The article first introduces the basic concepts and working principles of paper-based pressure sensors, then elaborates on their preparation methods, including material selection, structural design, and manufacturing processes. Subsequently, it discusses the applications of paper-based pressure sensors in areas such as wearable devices, healthcare, and environmental monitoring. Finally, it analyzes the current challenges and looks forward to future development directions. Research indicates that paper-based pressure sensors have broad application prospects in the field of flexible electronics, but further research is needed in terms of sensitivity, stability, and large-scale production.

References

[1]  Chen, Y., Wang, S., Liu, Y., Deng, H., Gao, H., Cao, M., et al. (2024) Ultra-Low Cost and High-Performance Paper-Based Flexible Pressure Sensor for Artificial Intelligent E-skin. Chemical Engineering Journal, 499, Article 156293.
https://doi.org/10.1016/j.cej.2024.156293
[2]  Loeys, S., Boute, R.N. and Antonio, K. (2025) The Use of IoT Sensor Data to Dynamically Assess Maintenance Risk in Service Contracts. European Journal of Operational Research.
https://doi.org/10.1016/j.ejor.2025.01.041
[3]  Rayabharapu, V.K., Rampur, V., Jyothi, N.M., Tripathi, V., Bhaskar, T. and Glory, K.B. (2022) IoT Sensor-Based Pollution Management Control Technique. Measurement: Sensors, 24, Article 100513.
https://doi.org/10.1016/j.measen.2022.100513
[4]  Song, X., Fan, Y. and Tang, X. (2025) FBG-Based Wearable Sensors and Devices in the Healthcare Field: A Review. Optics & Laser Technology, 181, Article 111920.
https://doi.org/10.1016/j.optlastec.2024.111920
[5]  Di, K., Wei, J., Ding, L., Shao, Z., Sha, J., Zhou, X., et al. (2025) A Wearable Sensor Device Based on Screen-Printed Chip with Biofuel Cell-Driven Electrochromic Display for Noninvasive Monitoring of Glucose Concentration. Chinese Chemical Letters, 36, Article 109911.
https://doi.org/10.1016/j.cclet.2024.109911
[6]  Holman, J.B., Oseyemi, A.E., Koumbia, M., Shi, Z., Li, C. and Ding, W. (2025) The Rise of Eco-Friendly Electronics: Exploring Wearable Paper-Based Electroanalytical Devices. Materials Science and Engineering: R: Reports, 163, Article 100939.
https://doi.org/10.1016/j.mser.2025.100939
[7]  Ha, T.W., Lee, C., Lim, D.Y., Kim, Y.B., Cho, H., Kim, J.H., et al. (2025) Highly Durability Carbon Fabric Strain Sensor: Monitoring Environmental Changes and Tracking Human Motion. Carbon Trends, 19, Article 100457.
https://doi.org/10.1016/j.cartre.2025.100457
[8]  Olabintan, A.B., Abdullahi, A.S., Yusuf, B.O., Ganiyu, S.A., Saleh, T.A. and Basheer, C. (2024) Prospects of Polymer Nanocomposite-Based Electrochemical Sensors as Analytical Devices for Environmental Monitoring: A Review. Microchemical Journal, 204, Article 111053.
https://doi.org/10.1016/j.microc.2024.111053
[9]  Narayana, T.L., Venkatesh, C., Kiran, A., Khan, S.B., Kumar, A., Khan, S.B., et al. (2024) Advances in Real Time Smart Monitoring of Environmental Parameters Using IoT and Sensors. Heliyon, 10, e28195.
https://doi.org/10.1016/j.heliyon.2024.e28195
[10]  Wei, C., Xu, Y., Hu, Y., Zhang, Q., Wei, N., Zeng, W., et al. (2025) Ti3C2Tx Mxene Paper-Based Flexible Wearable Pressure Sensor with Wide Pressure Detection Range for Human Motion Detection. Journal of Alloys and Compounds, 1017, Article 179126.
https://doi.org/10.1016/j.jallcom.2025.179126
[11]  Hao, J., Liu, H., Du, S., Xiang, H., Liu, G., Li, Z., et al. (2024) Rational Design of Biomass-Derived and UV-Curable Dynamic Polymer for the Encapsulation of Paper-Based Flexible Strain Sensor. Materials Today Sustainability, 26, Article 100756.
https://doi.org/10.1016/j.mtsust.2024.100756
[12]  Cao, M., Su, J., Fan, S., Qiu, H., Su, D. and Li, L. (2021) Wearable Piezoresistive Pressure Sensors Based on 3D Graphene. Chemical Engineering Journal, 406, Article 126777.
https://doi.org/10.1016/j.cej.2020.126777
[13]  Ruth, S.R.A. and Bao, Z. (2020) Designing Tunable Capacitive Pressure Sensors Based on Material Properties and Microstructure Geometry. ACS Applied Materials & Interfaces, 12, 58301-58316.
https://doi.org/10.1021/acsami.0c19196
[14]  Su, Y.-F., Han, G., Kong, Z., et al. (2020) Embeddable Piezoelectric Sensors for Strength Gain Monitoring of Cementitious Materials: The Influence of Coating Materials. Engineered Science, 11, 66-75.
[15]  Guo, X., Li, Y., Zeng, Z., Zhao, Y., Lei, X., Wang, Y., et al. (2023) Ultra-Sensitive Flexible Pressure Sensor with Hierarchical Structural Laser-Induced Carbon Nanosheets/Carbon Nanotubes Composite Film. Composites Science and Technology, 244, Article 110290.
https://doi.org/10.1016/j.compscitech.2023.110290
[16]  Zhu, H., Dai, S., Cao, J., Bai, H., Zhong, Y., Zhang, Z., et al. (2022) A High-Performance Textile Pressure Sensor Based on Carbon Black/Carbon Nanotube-Polyurethane Coated Fabrics with Porous Structure for Monitoring Human Motion. Materials Today Communications, 33, Article 104541.
https://doi.org/10.1016/j.mtcomm.2022.104541
[17]  Wang, L., Hu, J., Wei, W., Song, Y., Li, Y., Shen, Y., et al. (2024) Electrochemical Paper-Based Sensor Based on Molecular Imprinted Polymer and Nitrogen-Doped Graphene for Tetracycline Determination. Microchemical Journal, 207, Article 111809.
https://doi.org/10.1016/j.microc.2024.111809
[18]  Liang, Y., Mi, X., Yang, S., Wang, J. and Zhang, C. (2024) High-Performance Flexible Pressure Sensors with Bionic Dome-Shaped Fold Structures Inspired by Crocodile Skin. Sensors and Actuators A: Physical, 378, Article 115827.
https://doi.org/10.1016/j.sna.2024.115827
[19]  Pierre Claver, U. and Zhao, G. (2021) Recent Progress in Flexible Pressure Sensors Based Electronic Skin. Advanced Engineering Materials, 23, Article 2001187.
https://doi.org/10.1002/adem.202001187
[20]  Zhang, C., Tao, M., Luo, W., Zhao, X., Li, P., Gou, X., et al. (2024) Graphene Sterically-Wrapped Textile Piezoresistive Sensors: A Spray Coating Path for Synergistically Advancing Sensitivity and Response Range. Chemical Engineering Journal, 495, Article 153533.
https://doi.org/10.1016/j.cej.2024.153533
[21]  Zhao, W., Natsuki, J., Dinh Trung, V., Li, H., Tan, J., Yang, W., et al. (2024) AgNPs/CNTs Modified Nonwoven Fabric for PET-Based Flexible Interdigitated Electrodes in Pressure Sensor Applications. Chemical Engineering Journal, 499, Article 156252.
https://doi.org/10.1016/j.cej.2024.156252
[22]  Chen, Z., Ma, Y., Wang, H., Yu, B., Qian, L. and Zhao, Z. (2024) Starfish-Inspired Ultrasensitive Piezoresistive Pressure Sensor with an Ultra-Wide Detection Range for Healthcare and Intelligent Production. Chemical Engineering Journal, 497, Article 154953.
https://doi.org/10.1016/j.cej.2024.154953
[23]  Wright, D.N., Züchner, M., Annavini, E., Escalona, M.J., Hammerlund Teige, L., Whist Tvedt, L.G., et al. (2024) From Wires to Waves, a Novel Sensor System for in vivo Pressure Monitoring. Scientific Reports, 14, Article No. 7570.
https://doi.org/10.1038/s41598-024-58019-5
[24]  Romano, C., Lo Presti, D., Silvestri, S., Schena, E. and Massaroni, C. (2024) Flexible Textile Sensors-Based Smart T-Shirt for Respiratory Monitoring: Design, Development, and Preliminary Validation. Sensors, 24, Article 2018.
https://doi.org/10.3390/s24062018
[25]  Xiong, Y., Shen, Y., Tian, L., Hu, Y., Zhu, P., Sun, R., et al. (2020) A Flexible, Ultra-Highly Sensitive and Stable Capacitive Pressure Sensor with Convex Microarrays for Motion and Health Monitoring. Nano Energy, 70, Article 104436.
https://doi.org/10.1016/j.nanoen.2019.104436
[26]  Zheng, Y., Yu, Z., Mao, G., Li, Y., Pravarthana, D., Asghar, W., et al. (2020) A Wearable Capacitive Sensor Based on Ring/Disk‐Shaped Electrode and Porous Dielectric for Noncontact Healthcare Monitoring. Global Challenges, 4, Article ID: 1900079.
https://doi.org/10.1002/gch2.201900079
[27]  Aubeeluck, D.A., Forbrigger, C., Mohseni Taromsari, S., Chen, T., Diller, E. and Naguib, H.E. (2024) Screen-Printed Capacitive Tactile Sensor for Monitoring Tool-Tissue Interactions and Grasping Performances of a Surgical Magnetic Microgripper. ACS Applied Electronic Materials, 6, 6365-6377.
https://doi.org/10.1021/acsaelm.4c00841
[28]  Zhao, X., Chen, K., Huang, W., Luo, F., Wang, X. and Qin, Y. (2024) A Skin-Like Self-Powered Flexible Sensor for Wearable Monitoring and Robotic Tactile Application. IEEE Sensors Journal, 24, 39651-39658.
https://doi.org/10.1109/jsen.2024.3476173
[29]  Zhang, X., Ma, J., Deng, H., Zhong, J., Xu, K., Wu, Q., et al. (2024) A Mixed-Coordination Electron Trapping-Enabled High-Precision Touch-Sensitive Screen for Wearable Devices. Bio-Design and Manufacturing, 7, 413-427.
https://doi.org/10.1007/s42242-024-00293-3
[30]  Wang, X., Yu, J., Cui, Y. and Li, W. (2021) Research Progress of Flexible Wearable Pressure Sensors. Sensors and Actuators A: Physical, 330, Article 112838.
https://doi.org/10.1016/j.sna.2021.112838
[31]  Yun, T., Du, J., Ji, X., Tao, Y., Cheng, Y., Lv, Y., et al. (2023) Waterproof and Ultrasensitive Paper-Based Wearable Strain/Pressure Sensor from Carbon Black/Multilayer Graphene/Carboxymethyl Cellulose Composite. Carbohydrate Polymers, 313, Article 120898.
https://doi.org/10.1016/j.carbpol.2023.120898
[32]  Chen, M., Li, K., Cheng, G., He, K., Li, W., Zhang, D., et al. (2018) Touchpoint-Tailored Ultrasensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Applied Materials & Interfaces, 11, 2551-2558.
https://doi.org/10.1021/acsami.8b20284
[33]  Wang, C., Quan, J., Liu, L., Cao, P., Ding, K., Ding, Y., et al. (2024) A Rigid-Soft Hybrid Paper-Based Flexible Pressure Sensor with an Ultrawide Working Range and Frequency Bandwidth. Journal of Materials Chemistry A, 12, 13994-14004.
https://doi.org/10.1039/d4ta01394h
[34]  Wang, X., Chai, Y., Wang, Z., Yu, J. and Chen, X. (2023) A Linear and Large-Range Pressure Sensor Based on Hierarchical Structural SnO2@Carbon Nanotubes/Polyurethane Sponge. Ceramics International, 49, 30579-30585.
https://doi.org/10.1016/j.ceramint.2023.07.009
[35]  Zang, X., Jiang, Y., Wang, X., Wang, X., Ji, J. and Xue, M. (2018) Highly Sensitive Pressure Sensors Based on Conducting Polymer-Coated Paper. Sensors and Actuators B: Chemical, 273, 1195-1201.
https://doi.org/10.1016/j.snb.2018.06.132
[36]  Pranjale, G.S., Rayudu, G.P. and Patil, G.C. (2024) Analysis and Fabrication of Paper Based Screen-Printed Soil Potassium Sensor. Journal of the Indian Chemical Society, 101, Article 101492.
https://doi.org/10.1016/j.jics.2024.101492
[37]  Wu, G., Wu, L., Zhang, H., Wang, X., Xiang, M., Teng, Y., et al. (2024) Research Progress of Screen-Printed Flexible Pressure Sensor. Sensors and Actuators A: Physical, 374, Article 115512.
https://doi.org/10.1016/j.sna.2024.115512
[38]  Jung, M., Kim, K., Kim, B., Cheong, H., Shin, K., Kwon, O., et al. (2017) Paper-Based Bimodal Sensor for Electronic Skin Applications. ACS Applied Materials & Interfaces, 9, 26974-26982.
https://doi.org/10.1021/acsami.7b05672
[39]  Wang, Z., Ding, J. and Guo, R. (2023) Printable All-Paper Pressure Sensors with High Sensitivity and Wide Sensing Range. ACS Applied Materials & Interfaces, 15, 4789-4798.
https://doi.org/10.1021/acsami.2c19100
[40]  Li, A., Xu, J., Zhou, S., Zhang, Z., Cao, D., Wang, B., et al. (2024) All‐Paper‐Based, Flexible, and Bio‐Degradable Pressure Sensor with High Moisture Tolerance and Breathability through Conformally Surface Coating. Advanced Functional Materials, 34, Article ID: 2410762.
https://doi.org/10.1002/adfm.202410762
[41]  Liu, H., Zhang, Q., Yang, N., Jiang, X., Wang, F., Yan, X., et al. (2023) Ti3C2Tx MXene Paper-Based Wearable and Degradable Pressure Sensor for Human Motion Detection and Encrypted Information Transmission. ACS Applied Materials & Interfaces, 15, 44554-44562.
https://doi.org/10.1021/acsami.3c09176
[42]  Lai, S., Garufi, A., Madeddu, F., Angius, G., Bonfiglio, A. and Cosseddu, P. (2019) A Wearable Platform for Monitoring Wrist Flexion and Extension in Biomedical Applications Using Organic Transistor-Based Strain Sensors. IEEE Sensors Journal, 19, 6020-6028.
https://doi.org/10.1109/jsen.2019.2909174
[43]  Lin, X., Teng, Y., Xue, H., Bing, Y., Li, F., Wang, J., et al. (2024) Janus Conductive Mechanism: An Innovative Strategy Enabling Ultra‐Wide Linearity Range Pressure Sensing for Multi‐Scenario Applications. Advanced Functional Materials, 34, Article ID: 2316314.
https://doi.org/10.1002/adfm.202316314
[44]  Shen, L., Zhou, S., Gu, B., Wang, S. and Wang, S. (2023) Highly Sensitive Strain Sensor Fabricated by Direct Laser Writing on Lignin Paper with Strain Engineering. Advanced Engineering Materials, 25, Article ID: 2201882.
https://doi.org/10.1002/adem.202201882
[45]  Xia, Y., Huang, P., Lin, X., Wu, L., Li, K., Gao, C., et al. (2023) The Piezoresistive Pressure Sensors Based on ITO Nanocrystalline-Plant Fiber Composite. Science China Materials, 66, 3922-3930.
https://doi.org/10.1007/s40843-023-2534-1
[46]  Chowdhury, A.H., Jafarizadeh, B., Pala, N. and Wang, C. (2023) Paper-Based Supercapacitive Pressure Sensor for Wrist Arterial Pulse Waveform Monitoring. ACS Applied Materials & Interfaces, 15, 53043-53052.
https://doi.org/10.1021/acsami.3c08720

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133