|
Material Sciences 2025
Ba1-xSrxZr0.1Ce0.7Y0.1Yb0.1O3-δ电解质材料的制备与性能研究
|
Abstract:
采用甘氨酸–硝酸盐燃烧法合成了Ba1-xSrxZr0.1Ce0.7Y0.1Yb0.1O3-δ (x = 0, 0.25, 0.5, 0.75, 1)系列钙钛矿电解质材料,系统探究了Sr元素掺杂对BZCYYb电解质材料的物相结构、烧结活性及电化学性能的影响。X射线衍射结果可以看出不同Sr掺杂的BZCYYb粉体主相均为钙钛矿结构。烧结实验表明,Sr掺杂能够提升电解质粉体烧结活性,粉体可在1350℃烧结致密。电化学阻抗谱测试表明,随着Sr含量增加粉体电导率先升高后降低,Ba0.75Sr0.25Zr0.1Ce0.7Y0.1Yb0.1O3-δ电导率最高,700℃时可达18.77 × 10?3 S·cm?1,通过阿伦尼乌斯关系拟合活化能为0.59 eV。
A series of Ba1-xSrxZr0.1Ce0.7Y0.1Yb0.1O3-δ (x = 0, 0.25, 0.5, 0.75, 1) perovskite-type electrolyte materials were synthesized via the glycine-nitrate combustion method. The effects of Sr doping on the phase structure, sinterability, and electrochemical performance of BZCYYb electrolytes were systematically investigated. X-ray diffraction results confirmed that all Sr-doped BZCYYb powders retained a single-phase perovskite structure. Sintering experiments demonstrated that Sr doping significantly enhanced the sintering activity of the electrolyte powders, enabling dense ceramic pellets to be obtained at 1350?C. Electrochemical impedance spectroscopy revealed that the electrical conductivity of the materials initially increased and then decreased with higher Sr content. The Ba0.75Sr0.25Zr0.1Ce0.7Y0.1b0.1O3-δ composition exhibited the highest conductivity of 18.77 × 10?3 S·cm?1 at 700?C, with an activation energy of 0.59 eV calculated from the Arrhenius relationship.
[1] | Lai, Q., Chen, J., Chang, F., Pei, J., Liang, Y., Chen, X., et al. (2023) Cold Sintering Process Assisted Sintering for 8YSZ Ceramic: A Way of Achieving High Density and Electrical Conductivity at a Reduced Sintering Temperature. Ceramics International, 49, 14744-14749. https://doi.org/10.1016/j.ceramint.2023.01.070 |
[2] | Yang, L., Wang, S., Blinn, K., Liu, M., Liu, Z., Cheng, Z., et al. (2009) Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: Bazr0.1Ce0.7Y0.2–xYbxO3–δ. Science, 326, 126-129. https://doi.org/10.1126/science.1174811 |
[3] | Wang, S., Zhang, L., Zhang, L., Brinkman, K. and Chen, F. (2013) Two-Step Sintering of Ultrafine-Grained Barium Cerate Proton Conducting Ceramics. Electrochimica Acta, 87, 194-200. https://doi.org/10.1016/j.electacta.2012.09.007 |
[4] | Liu, Y., Yang, L., Liu, M., Tang, Z. and Liu, M. (2011) Enhanced Sinterability of Bazr0.1Ce0.7Y0.2–xYbxO3–δ by Addition of Nickel Oxide. Journal of Power Sources, 196, 9980-9984. https://doi.org/10.1016/j.jpowsour.2011.08.047 |
[5] | Dudek, M., Lis, B., Lach, R., Daugėla, S., Šalkus, T., Kežionis, A., et al. (2019) Ba0.95Ca0.05Ce0.9Y0.1O3 as an Electrolyte for Proton-Conducting Ceramic Fuel Cells. Electrochimica Acta, 304, 70-79. https://doi.org/10.1016/j.electacta.2019.02.112 |
[6] | Wan, Y., He, B., Wang, R., Ling, Y. and Zhao, L. (2017) Effect of Co Doping on Sinterability and Protonic Conductivity of Bazr0.1Ce0.7Y0.2–xYbxO3–δ for Protonic Ceramic Fuel Cells. Journal of Power Sources, 347, 14-20. https://doi.org/10.1016/j.jpowsour.2017.02.049 |
[7] | Zhou, X., Liu, L., Zhen, J., Zhu, S., Li, B., Sun, K., et al. (2011) Ionic Conductivity, Sintering and Thermal Expansion Behaviors of Mixed Ion Conductor Bazr0.1Ce0.7Y0.2–xYbxO3–δ Prepared by Ethylene Diamine Tetraacetic Acid Assisted Glycine Nitrate Process. Journal of Power Sources, 196, 5000-5006. https://doi.org/10.1016/j.jpowsour.2011.01.092 |
[8] | Zhang, C. and Zhao, H. (2010) Electrical Conduction Behavior of Sr Substituted Proton Conductor Ba1−xSrxCe0.9Nd0.1O3−δ. Solid State Ionics, 181, 1478-1485. https://doi.org/10.1016/j.ssi.2010.08.028 |
[9] | Bonanos, N. (1995) Perovskite Solid Electrolytes: Structure, Transport Properties and Fuel Cell Applications. Solid State Ionics, 79, 161-170. https://doi.org/10.1016/0167-2738(95)00056-c |
[10] | Jaiswal, S.K. and Kumar, J. (2012) Structural and Optical Absorption Studies of Barium Substituted Strontium Ferrite Powder. Solid State Sciences, 14, 1157-1168. https://doi.org/10.1016/j.solidstatesciences.2012.05.011 |
[11] | Arabacı, A., Altınçekiç, T.G., Der, M. and Öksüzömer, M.A.F. (2019) Preparation and Properties of Ceramic Electrolytes in the Nd and Gd Co-Doped Ceria Systems Prepared by Polyol Method. Journal of Alloys and Compounds, 792, 1141-1149. https://doi.org/10.1016/j.jallcom.2019.04.098 |
[12] | Wang, S., Zhao, F., Zhang, L., Brinkman, K. and Chen, F. (2010) Stability and Electrical Property of Ba1−xSrxCe0.8Y0.2O3−δ High Temperature Proton Conductor. Journal of Alloys and Compounds, 506, 263-267. https://doi.org/10.1016/j.jallcom.2010.06.188 |
[13] | Iwahara, H. (1996) Proton Conducting Ceramics and Their Applications. Solid State Ionics, 86, 9-15. https://doi.org/10.1016/0167-2738(96)00087-2 |
[14] | Madhuri Sailaja, J., Vijaya Babu, K., Murali, N. and Veeraiah, V. (2017) Effect of Strontium on Nd Doped Ba1−xSrxCe0.65Zr0.25Nd0.1O3−Δ Proton Conductor as an Electrolyte for Solid Oxide Fuel Cells. Journal of Advanced Research, 8, 169-181. https://doi.org/10.1016/j.jare.2016.12.006 |