|
Material Sciences 2025
原位电沉积镍钴双金属氢氧化物用于超级电容器电极材料的研究
|
Abstract:
超级电容器具有高功率密度和快速充放电速率的特点。在本文中通过简单经济的电化学电沉积技术,以硝酸镍和硫酸钴作为金属源,通过一步电沉积法,在石墨纸电极上生长了纳米球形NiCo LDH。通过多种分析技术对其形貌、组成和电化学性能进行分析,结果表明球形NiCo LDH表面由三维交联的片层结构组成。同时NiCo LDH电极表现出优异的电化学性能,在1 A·g?1电流密度下的比电容为735 F·g?1;10 A·g?1时充放电循环3000次,电容保持率为80.4%。将其作为正极,废纸衍生的碳材料AC作为负极构建了非对称超级电容器,组装的NiCo LDH//AC非对称超级电容器(ASC)在功率密度为749.7 W·kg?1具有最大能量密度为21.7 Wh·kg?1,成功驱动小车模型,展现了其实际应用的潜力。
Supercapacitors have the characteristics of high power density and fast charging and discharging rates. In this article, nano spherical NiCo LDH was grown on graphite paper electrodes using a simple and economical electrochemical deposition technique with nickel nitrate and cobalt sulfate as metal sources through a one-step electrodeposition method. Through various analytical techniques, the morphology, composition, and electrochemical properties of the spherical NiCo LDH were analyzed, and the results showed that the surface was composed of a three-dimensional cross-linked layer structure. Meanwhile, the NiCo LDH electrode exhibits excellent electrochemical performance, with a specific capacitance of 735 F·g?1 at a current density of 1 A·g?1; When charged and discharged 3000 times at 10 A·g?1, the capacitance retention rate was 80.4%. Using it as the positive electrode and carbon material AC derived from waste paper as the negative electrode, an asymmetric supercapacitor was constructed. The assembled NiCo LDH//AC asymmetric supercapacitor (ASC) had a maximum energy density of 21.7 Wh·kg?1 at a power density of 749.7 Wh·kg?1, successfully driving a car model and demonstrating its potential for practical applications.
[1] | Chen, F., Li, j., Shao, Y., Zhu, Z., Shen, T., Chen, K., et al. (2025) ZIF-67 Wraps Ni-Mn LDHS Nanosheets to Enhance the Capacitive Contribution of Supercapacitors. Chemical Engineering Journal, 507, Article 160454. https://doi.org/10.1016/j.cej.2025.160454 |
[2] | Huang, X., Huang, Y., Zhao, J., Xu, G. and Wang, X. (2023) Facile Design and Synthesis of Nickel Foam@mxene@nico Layered Hydroxides Core-Sheath Nanostructure for High Mass-Loading of Supercapacitors. Electrochimica Acta, 461, Article 142657. https://doi.org/10.1016/j.electacta.2023.142657 |
[3] | Wu, Q., Li, F., Sheng, H., Qi, Y., Yuan, J., Bi, H., et al. (2024) In Situ Fabrication of Hierarchical Cuo@coni-LDH Composite Structures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 16, 23241-23253. https://doi.org/10.1021/acsami.4c01533 |
[4] | He, Y., Li, L., He, X., Liu, C., Aminabhavi, T.M., Vasseghian, Y., et al. (2024) Heterostructured Nanocoral-Like Co(OH)F@NiCo-LDH/Co9S8 Nanocomposites as Electrodes for Supercapacitors. ACS Applied Nano Materials, 7, 12701-12710. https://doi.org/10.1021/acsanm.4c01226 |
[5] | Li, X., Ren, J., Sridhar, D., Xu, B.B., Algadi, H., El-Bahy, Z.M., et al. (2023) Progress of Layered Double Hydroxide-Based Materials for Supercapacitors. Materials Chemistry Frontiers, 7, 1520-1561. https://doi.org/10.1039/d2qm01346k |
[6] | Zhao, N., Fu, P., Cui, X., Luo, M. and Huang, J. (2025) Electrodeposition of Nickel Cobalt Layered Double Hydroxides on Conductive Nickel-Coated Carbon Cloth: A Strategy for Boosting Flexible Supercapacitor Electrode Performance. Journal of Energy Storage, 110, Article 115355. https://doi.org/10.1016/j.est.2025.115355 |
[7] | Jiang, S., Ding, J., Wang, R., Deng, Y., Chen, F., Zhou, M., et al. (2022) High Performance Nico-LDH//Fe2O3 Asymmetric Supercapacitors Based on Binder-Free Electrodes with Dual Conductive Networks. Chemical Engineering Journal, 431, Article 133936. https://doi.org/10.1016/j.cej.2021.133936 |
[8] | Jung, M.Y., Lee, C., Park, J., Son, J., Yun, Y.J. and Jun, Y. (2024) Transparent Supercapacitors with Networked Mxene on Nico-Layered Double Hydroxide. Chemical Engineering Journal, 490, Article 151556. https://doi.org/10.1016/j.cej.2024.151556 |
[9] | Wang, Y., Zheng, F., Pan, Q., Deng, D., Liu, L. and Chen, B. (2021) A Three-Dimensional Nico-LDH Array Modified Halloysite Nanotube Composite for High-Performance Battery-Type Supercapacitor. Journal of Alloys and Compounds, 884, Article 161162. https://doi.org/10.1016/j.jallcom.2021.161162 |
[10] | Liu, L., Guan, T., Fang, L., Wu, F., Lu, Y., Luo, H., et al. (2018) Self-Supported 3D Nico-LDH/Gr Composite Nanosheets Array Electrode for High-Performance Supercapacitor. Journal of Alloys and Compounds, 763, 926-934. https://doi.org/10.1016/j.jallcom.2018.05.358 |
[11] | Luo, L., Zhou, Y., Yan, W., Luo, L., Deng, J., Du, G., et al. (2021) Design and Construction of Hierarchical Sea Urchin-Like Nico-LDH@ACF Composites for High-Performance Supercapacitors. Industrial Crops and Products, 171, Article 113900. https://doi.org/10.1016/j.indcrop.2021.113900 |
[12] | Han, X., Li, J., Lu, J., Luo, S., Wan, J., Li, B., et al. (2021) High Mass-Loading Nico-LDH Nanosheet Arrays Grown on Carbon Cloth by Electrodeposition for Excellent Electrochemical Energy Storage. Nano Energy, 86, Article 106079. https://doi.org/10.1016/j.nanoen.2021.106079 |
[13] | Jiang, D., Zheng, M., You, Y., Li, F., Yuan, H., Zhang, W., et al. (2021) Β-Ni(OH)2/Nickel-Cobalt Layered Double Hydroxides Coupled with Fluorine-Modified Graphene as High-Capacitance Supercapacitor Electrodes with Improved Cycle Life. Journal of Alloys and Compounds, 875, Article 159929. https://doi.org/10.1016/j.jallcom.2021.159929 |
[14] | Cheng, J.P., Liu, L., Ma, K.Y., Wang, X., Li, Q.Q., Wu, J.S., et al. (2017) Hybrid Nanomaterial of Α-Co(OH)2 Nanosheets and Few-Layer Graphene as an Enhanced Electrode Material for Supercapacitors. Journal of Colloid and Interface Science, 486, 344-350. https://doi.org/10.1016/j.jcis.2016.09.064 |
[15] | Liu, Q., Hu, R., Qi, J., Sui, Y., He, Y., Meng, Q., et al. (2019) Facile Synthesis of NiCoP Nanosheets on Carbon Cloth and Their Application as Positive Electrode Material in Asymmetric Supercapacitor. Ionics, 26, 355-366. https://doi.org/10.1007/s11581-019-03174-3 |
[16] | Wang, G., Jin, Z. and Zhang, W. (2019) A Phosphatized Nico LDH 1D Dendritic Electrode for High Energy Asymmetric Supercapacitors. Dalton Transactions, 48, 14853-14863. https://doi.org/10.1039/c9dt02955a |