全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于LU分解并行求解稠密线性方程组
Parallel LU Decomposition for Solving Dense Linear Systems

DOI: 10.12677/pm.2025.154112, PP. 84-90

Keywords: LU分解,并行计算,稠密线性方程组,CUDA
LU Decomposition
, Parallel Computing, Dense Linear Systems, CUDA

Full-Text   Cite this paper   Add to My Lib

Abstract:

快速求解线性方程组是电磁场、流体力学、结构力学等许多工程问题的核心,LU分解是求解稠密线性方程组最常用的方法之一。该文详细描述了LU分解的原理和过程,基于此过程的特点,在CUDA (Compute Unified Device Architecture)并行环境下,提出一种的并行计算方法,该方法可以将计算任务划分为若干小问题进行求解,各部分求解完成后再通过前向回代和后向回代,即可获得最终解。最后通过实验证明,该方法能够充分利用GPU,有效地减少了数据间的通信开销,从而加快了求解速度,提高了计算效率。
Rapid solving of linear systems is central to engineering challenges in electromagnetics, fluid dynamics, structural mechanics, and more. LU decomposition remains one of the most widely used methods for dense linear systems. This paper elaborates on the principles and process of LU decomposition. Leveraging its algorithmic characteristics, we propose a parallel computation framework on CUDA that decomposes the computational task into smaller sub-problems. After solving these sub-tasks independently, the final solution is reconstructed through forward and backward substitutions. Experimental results demonstrate that this method maximizes GPU utilization, significantly reduces inter-node communication overhead, and achieves accelerated solving speeds with improved computational efficiency.

References

[1]  阳王东, 王昊天, 张宇峰, 等. 异构混合并行计算综述[J]. 计算机科学, 2020, 47(8): 5-16.
[2]  陈国良, 孙广中, 徐云, 等. 并行计算的一体化研究现状与发展趋势[J]. 科学通报, 2009, 54(8): 1043-1049.
[3]  汪茂, 谭捍东, 林昌洪, 等. 基于大地电磁二维反演的MPI和CUDA并行算法研究[J]. 科学技术与工程, 2017, 17(10): 225-230.
[4]  张健, 李瑞田, 邓亮, 等. 面向多核CPU/众核GPU架构的非结构CFD共享内存并行计算技术[J]. 航空学报, 2024, 45(7): 113-126.
[5]  杨梅, 李志民, 曹大勇. CUDA架构下大规模稠密线性方程组的并行求解[J]. 计算机工程与应用, 2011, 47(32): 27-30.
[6]  Lioen, W.M. and Winter, D.T. (1992) Solving Large Dense Systems of Linear Equations on Systems with Virtual Memory and with Cache. Applied Numerical Mathematics, 10, 73-85.
https://doi.org/10.1016/0168-9274(92)90056-j
[7]  Dumas, J., Gautier, T., Pernet, C., Roch, J. and Sultan, Z. (2016) Recursion Based Parallelization of Exact Dense Linear Algebra Routines for Gaussian Elimination. Parallel Computing, 57, 235-249.
https://doi.org/10.1016/j.parco.2015.10.003
[8]  徐鹤, 周涛, 李鹏, 等. 基于鲲鹏处理器的LU并行分解优化算法[J]. 计算机科学, 2024, 51(9): 51-58.
[9]  庞文豪, 王嘉伦, 翁楚良. GPGPU和CUDA统一内存研究现状综述[J]. 计算机工程, 2024, 50(12): 1-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133