|
Pure Mathematics 2025
基于Node2vec与GCN融合的图嵌入优化方法研究
|
Abstract:
本文结合了Node2vec和GCN这两种方法,先利用Node2vec方法得到初步的图嵌入,之后将其作为输入利用GCN进一步更新图嵌入矩阵。本文选择在维基数据集上进行节点分类任务,比较了结合前后方法的表现,验证了其有效性。
In this paper, we integrate the Node2vec and GCN methods. Initially, the Node2vec method is employed to obtain preliminary graph embeddings, which are then used as input to further update the graph embedding matrix through GCN. The study selects the Wikipedia dataset for node classification tasks, comparing the performance of the methods before and after integration to validate their effectiveness.
[1] | Grover, A. and Leskovec, J. (2016) node2vec: Scalable Feature Learning for Networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 855-864. https://doi.org/10.1145/2939672.2939754 |
[2] | 王慧雪. 基于node2vec的社区检测方法[J]. 计算机与数字工程, 2020, 48(2): 403-408. |
[3] | 戴怡清. 基于node2vec的科研合作网络链路预测[D]: [硕士学位论文]. 武汉: 武汉大学, 2019. |
[4] | Ha, J. and Park, S. (2023) NCMD: Node2vec-Based Neural Collaborative Filtering for Predicting miRNA-Disease Association. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20, 1257-1268. https://doi.org/10.1109/tcbb.2022.3191972 |
[5] | 李梦. node2vec模型在推荐系统中的应用[D]: [硕士学位论文]. 重庆: 西南大学, 2022. |
[6] | 杜阳阳, 李华康, 李涛. 基于Node2vec的改进算法的研究[J]. 计算机技术与发展, 2018, 28(7): 6-10. |
[7] | 刘向宇, 燕玮, 孟星妤, 侯开茂. 一种基于网络表示学习的网络安全用户发现方法[J]. 网络安全与数据治理, 2022, 41(7): 78-82. |
[8] | 姚锐. 采用Node2Vec模型对网络特征表示方法研究[D]: [硕士学位论文]. 南京: 南京大学, 2018. |
[9] | 杜瑾, 熊回香, 王妞妞. 融合多元网络与网络表示学习的科研合作者推荐研究[J]. 情报资料工作, 2022, 43(4): 27-35. |
[10] | Thomas, N. (2016) Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. |
[11] | Xin, X., Wang, C., Ying, X. and Wang, B. (2017) Deep Community Detection in Topologically Incomplete Networks. Physica A: Statistical Mechanics and its Applications, 469, 342-352. https://doi.org/10.1016/j.physa.2016.11.029 |