全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

(2 + 1)维BLMP方程Lump波与孤波的相互作用解
Interactional Solutions of One Lump and Solitons for the (2 + 1)-Dimensional BLMP Equation

DOI: 10.12677/pm.2025.154105, PP. 22-30

Keywords: (2 + 1)维BLMP方程,Lump解,共振相互作用,Hirota双线性法,长波极限法
(2 + 1)-BLMP Equation
, Lump Solution, Resonant Interaction, Hirota Bilinear Method, Long-Wave Limit Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文应用Hirota双线性方法探讨了(2 + 1)维Boiti-Leon-Manna-Pempinelli (BLMP)方程的解及其相互作用。该方法的一个特点是使用对数变换将方程转化为双线性形式,且我们在对数变换中引入了非零常数。本文分析了1-lump波分别与1-kink孤波和2-kink孤波之间的相互作用,揭示了它们的弹性和共振碰撞行为。为了进一步说明这些解的特征,我们利用Mathematica软件提供了详细的三维图示结果。
In this study, we investigate the (2 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equations using the Hirota bilinear method. A feature of our approach is the use of a logarithmic transformation to convert the equation into bilinear form with the introduction of a nonzero constant in the transformation. We analyze the interaction dynamics of lump solutions with one and two kink solitons, revealing their elastic and resonant collision behaviors. To further illustrate the characteristics of these solutions, we provide detailed 3D plots using the Mathematica software.

References

[1]  Coleman, C.J. (1990) A Boundary Element Approach to Some Nonlinear Equations from Fluid Mechanics. Computational Mechanics, 6, 197-202.
https://doi.org/10.1007/bf00350236
[2]  Younas, U. and Ren, J. (2023) Diversity of Wave Structures to the Conformable Fractional Dynamical Model. Journal of Ocean Engineering and Science, 8, 559-572.
https://doi.org/10.1016/j.joes.2022.04.014
[3]  Wazwaz, A. (2017) Exact Soliton and Kink Solutions for New (3 + 1)-Dimensional Nonlinear Modified Equations of Wave Propagation. Open Engineering, 7, 169-174.
https://doi.org/10.1515/eng-2017-0023
[4]  Shqair, M. (2019) Solution of Different Geometries Reflected Reactors Neutron Diffusion Equation Using the Homotopy Perturbation Method. Results in Physics, 12, 61-66.
https://doi.org/10.1016/j.rinp.2018.11.025
[5]  Morris, J.F. (2020) Toward a Fluid Mechanics of Suspensions. Physical Review Fluids, 5, Article ID: 110519.
https://doi.org/10.1103/physrevfluids.5.110519
[6]  Li, L., Yan, Y. and Xie, Y. (2022) Rational Solutions with Non-Zero Offset Parameters for an Extended (3 + 1)-Dimensional BKP-Boussinesq Equation. Chaos, Solitons & Fractals, 160, Article ID: 112250.
https://doi.org/10.1016/j.chaos.2022.112250
[7]  Yin, Z. and Tian, S. (2021) Nonlinear Wave Transitions and Their Mechanisms of (2 + 1)-Dimensional Sawada-Kotera Equation. Physica D: Nonlinear Phenomena, 427, Article ID: 133002.
https://doi.org/10.1016/j.physd.2021.133002
[8]  Wazwaz, A. (2021) Two New Painlevé Integrable KDV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS) Equation and New Negative-Order KdV-CBS Equation. Nonlinear Dynamics, 104, 4311-4315.
https://doi.org/10.1007/s11071-021-06537-6
[9]  Guo, H., Xia, T. and Hu, B. (2020) High-Order Lumps, High-Order Breathers and Hybrid Solutions for an Extended (3 + 1)-Dimensional Jimbo-Miwa Equation in Fluid Dynamics. Nonlinear Dynamics, 100, 601-614.
https://doi.org/10.1007/s11071-020-05514-9
[10]  Tan, F. and Wu, L. (2023) On the Bäcklund Transformation of a Generalized Harry Dym Type Equation. Wave Motion, 120, Article ID: 103162.
https://doi.org/10.1016/j.wavemoti.2023.103162
[11]  He, Y. and Tam, H. (2009) Bilinear Bäcklund Transformation and Lax Pair for a Coupled Ramani Equation. Journal of Mathematical Analysis and Applications, 357, 132-136.
https://doi.org/10.1016/j.jmaa.2009.04.006
[12]  Lü, X. (2013) Soliton Behavior for a Generalized Mixed Nonlinear Schrödinger Model with n-Fold Darboux Transformation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23, Article ID: 033137.
https://doi.org/10.1063/1.4821132
[13]  Chen, H. and Zheng, S. (2023) Darboux Transformation for Nonlinear Schrödinger Type Hierarchies. Physica D: Nonlinear Phenomena, 454, Article ID: 133863.
https://doi.org/10.1016/j.physd.2023.133863
[14]  Ablowitz, M.J., Kaup, D.J., Newell, A.C. and Segur, H. (1974) The Inverse Scattering Transform‐Fourier Analysis for Nonlinear Problems. Studies in Applied Mathematics, 53, 249-315.
https://doi.org/10.1002/sapm1974534249
[15]  Fan, E. (2000) Extended Tanh-Function Method and Its Applications to Nonlinear Equations. Physics Letters A, 277, 212-218.
https://doi.org/10.1016/s0375-9601(00)00725-8
[16]  Hirota, R. (1971) Exact Solution of the Korteweg-De Vries Equation for Multiple Collisions of Solitons. Physical Review Letters, 27, 1192-1194.
https://doi.org/10.1103/physrevlett.27.1192
[17]  Ma, W. (2022) Soliton Solutions by Means of Hirota Bilinear Forms. Partial Differential Equations in Applied Mathematics, 5, Article ID: 100220.
https://doi.org/10.1016/j.padiff.2021.100220
[18]  Gurefe, Y., Misirli, E., Sonmezoglu, A. and Ekici, M. (2013) Extended Trial Equation Method to Generalized Nonlinear Partial Differential Equations. Applied Mathematics and Computation, 219, 5253-5260.
https://doi.org/10.1016/j.amc.2012.11.046
[19]  Boiti, M., Leon, J.J., Manna, M. and Pempinelli, F. (1986) On the Spectral Transform of a Korteweg-De Vries Equation in Two Spatial Dimensions. Inverse Problems, 2, 271-279.
https://doi.org/10.1088/0266-5611/2/3/005
[20]  Ablowitz, M.J. and Satsuma, J. (1978) Solitons and Rational Solutions of Nonlinear Evolution Equations. Journal of Mathematical Physics, 19, 2180-2186.
https://doi.org/10.1063/1.523550
[21]  Satsuma, J. and Ablowitz, M.J. (1979) Two-Dimensional Lumps in Nonlinear Dispersive Systems. Journal of Mathematical Physics, 20, 1496-1503.
https://doi.org/10.1063/1.524208

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133