全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

马尔可夫跳变非线性系统在离散时间状态下的相关研究
Correlation Study of Discrete Time for Markovian Jump Nonlinear Systems

DOI: 10.12677/pm.2025.154104, PP. 14-21

Keywords: 马尔可夫跳变系统,随机稳定性,非线性系统
Markov Jump Systems
, Stochastic Stability, Nonlinear Systems

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要对离散时间正马尔可夫跳变非线性系统(PMJNS)的随机稳定性进行研究。首先对离散时间正马尔可夫跳变非线性系统随机稳定性的一些定义进行介绍。然后利用多重极大可分Lyapunov函数方法,给出了离散时间正马尔可夫跳变非线性系统的一些随机稳定性判据,以及离散时间正马尔可夫跳变线性系统(PMJLS)的一些相应判据。与以往要求子系统稳定或边缘稳定的结论不同,得到的结果允许一些子系统是不稳定的。基于所提出的准则,离散时间正马尔可夫跳变系统的随机稳定性行为可以由系统函数的代数性质和马尔可夫链的概率特征得到。
In this paper, the stochastic stability of discrete-time positive Markovian jump nonlinear systems (PMJNS) is studied. First, some definitions of stochastic stability of discrete-time positive Markovian jump nonlinear systems are introduced. Then, some stochastic stability criteria for discrete-time positive Markovian jump nonlinear systems are given by using the method of multiple maximal separable Lyapunov functions. And some corresponding criteria for discrete-time positive Markovian jump linear systems (PMJLS). Unlike previous conclusions that require subsystem stability or edge stability, the results obtained allow some subsystems to be unstable based on the proposed criteria, the stochastic stability behavior of discrete-time positive Markovian jump systems can be obtained from the algebraic properties of the system functions and the probabilistic characteristics of Markov chains.

References

[1]  Luenberger, D. (1979) Introduction to Dynamic Systems. Wiley.
[2]  Li, S. and Xiang, Z. (2016) Stochastic Stability Analysis and l∞-Gain Controller Design for Positive Markov Jump Systems with Time-Varying Delays. Nonlinear Analysis: Hybrid Systems, 22, 31-42.
https://doi.org/10.1016/j.nahs.2016.02.004
[3]  De Leenheer, P. and Aeyels, D. (2001) Stabilization of Positive Linear Systems. Systems & Control Letters, 44, 259-271.
https://doi.org/10.1016/s0167-6911(01)00146-3
[4]  Zhang, N., Sun, Y. and Zhao, P. (2017) State Bounding for Homogeneous Positive Systems of Degree One with Time-Varying Delay and Exogenous Input. Journal of the Franklin Institute, 354, 2893-2904.
https://doi.org/10.1016/j.jfranklin.2017.01.031
[5]  Zhao, Y. and Meng, F. (2019) Input-to-State Stability of Nonlinear Positive Systems. International Journal of Control, Automation and Systems, 17, 3058-3068.
https://doi.org/10.1007/s12555-018-0715-4
[6]  Shafai, B., Oghbaee, A. and Nazari, S. (2016) Robust Fault Detection for Positive Systems. 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, 12-14 December 2016, 6470-6476.
https://doi.org/10.1109/cdc.2016.7799265
[7]  Xiang, M. and Xiang, Z. (2014) Robust Fault Detection for Switched Positive Linear Systems with Time-Varying Delays. ISA Transactions, 53, 10-16.
https://doi.org/10.1016/j.isatra.2013.07.013
[8]  Wang, J. and Zhao, J. (2016) Stabilisation of Switched Positive Systems with Actuator Saturation. IET Control Theory & Applications, 10, 717-723.
https://doi.org/10.1049/iet-cta.2015.0064
[9]  Zhang, J., Cai, X., Zhang, W. and Han, Z. (2015) Robust Model Predictive Control with ℓ1-Gain Performance for Positive Systems. Journal of the Franklin Institute, 352, 2831-2846.
https://doi.org/10.1016/j.jfranklin.2015.05.007
[10]  Chen, X., Lam, J. and Li, P. (2014) Positive Filtering for Continuous-Time Positive Systems Under L1 Performance. International Journal of Control, 87, 1906-1913.
https://doi.org/10.1080/00207179.2014.893587
[11]  Trindade Nascimento, F. and Cunha, J.P.V.S. (2019) Positive Filter Synthesis for Sliding-Mode Control. IET Control Theory & Applications, 13, 1006-1014.
https://doi.org/10.1049/iet-cta.2018.5293
[12]  Gurvits, L., Shorten, R. and Mason, O. (2007) On the Stability of Switched Positive Linear Systems. IEEE Transactions on Automatic Control, 52, 1099-1103.
https://doi.org/10.1109/tac.2007.899057
[13]  Ju, Y. and Sun, Y. (2020) Stabilization of Discrete-Time Switched Positive Linear Systems via Weak Switched Linear Copositive Lyapunov Function. Automatica, 114, Article 108836.
https://doi.org/10.1016/j.automatica.2020.108836
[14]  Dong, J. (2015) Stability of Switched Positive Nonlinear Systems. International Journal of Robust and Nonlinear Control, 26, 3118-3129.
https://doi.org/10.1002/rnc.3495
[15]  Li, S. and Xiang, Z. (2016) Stabilisation of a Class of Positive Switched Nonlinear Systems under Asynchronous Switching. International Journal of Systems Science, 48, 1537-1547.
https://doi.org/10.1080/00207721.2016.1271916
[16]  Bolzern, P., Colaneri, P. and De Nicolao, G. (2014) Stochastic Stability of Positive Markov Jump Linear Systems. Automatica, 50, 1181-1187.
https://doi.org/10.1016/j.automatica.2014.02.016
[17]  Shi, Y. and Yu, B. (2009) Output Feedback Stabilization of Networked Control Systems with Random Delays Modeled by Markov Chains. IEEE Transactions on Automatic Control, 54, 1668-1674.
https://doi.org/10.1109/tac.2009.2020638
[18]  Fei, Z., Gao, H. and Shi, P. (2009) New Results on Stabilization of Markovian Jump Systems with Time Delay. Automatica, 45, 2300-2306.
https://doi.org/10.1016/j.automatica.2009.06.020
[19]  Liberzon, D., Hespanha, J.P. and Morse, A.S. (1999) Stability of Switched Systems: A Lie-Algebraic Condition. Systems & Control Letters, 37, 117-122.
https://doi.org/10.1016/s0167-6911(99)00012-2
[20]  Lian, J., Li, S. and Liu, J. (2018) T-S Fuzzy Control of Positive Markov Jump Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 26, 2374-2383.
https://doi.org/10.1109/tfuzz.2017.2778694
[21]  Ren, C. and He, S. (2019) Sliding Mode Control for a Class of Nonlinear Positive Markov Jumping Systems with Uncertainties in a Finite-Time Interval. International Journal of Control, Automation and Systems, 17, 1634-1641.
https://doi.org/10.1007/s12555-018-0793-3
[22]  Zhao, P., Zhao, Y. and Song, X. (2020) Stochastic Stability of Nonlinear Positive Systems with Random Switching Signals. Nonlinear Analysis: Hybrid Systems, 38, Article 100940.
https://doi.org/10.1016/j.nahs.2020.100940
[23]  Aeyels, D. and De Leenheer, P. (2002) Extension of the Perron—Frobenius Theorem to Homogeneous Systems. SIAM Journal on Control and Optimization, 41, 563-582.
https://doi.org/10.1137/s0363012900361178
[24]  Feyzmahdavian, H.R., Charalambous, T. and Johansson, M. (2014) Exponential Stability of Homogeneous Positive Systems of Degree One with Time-Varying Delays. IEEE Transactions on Automatic Control, 59, 1594-1599.
https://doi.org/10.1109/tac.2013.2292739

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133