全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线粒体转移/移植的途径及治疗潜力的研究进展
Advancements in Pathways and Therapeutic Potential of Mitochondrial Transfer/Transplantation

DOI: 10.12677/jcpm.2025.42233, PP. 702-710

Keywords: 线粒体移植,线粒体,线粒体治疗
Mitochondrial Transplantation
, Mitochondria, Mitochondrial Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

线粒体作为细胞的代谢中心是维持细胞正常生命活动的重要细胞器,其功能状态的异常被认为是引起人类一系列疾病的重要原因。最近研究表明,线粒体可以在不同细胞之间进行水平的转移,发挥改变受体代谢状态,线粒体质量控制,免疫调节等作用,进而影响疾病的发生与发展。因此干预线粒体的转移是治疗线粒体相关疾病的新靶点。本综述概述了线粒体转移的机制和功能,重点聚集该领域的最新进展以及治疗人类疾病的潜力和方法。
Mitochondria, as the metabolic hub of cells, are crucial organelles for maintaining normal cellular life activities. Dysfunctional mitochondrial states are recognized as a critical factor contributing to a spectrum of human diseases. Recent studies have revealed that mitochondria can undergo horizontal transfer between cells, exerting profound effects on recipient cells by altering metabolic states, mediating mitochondrial quality control, regulating immune responses, and thereby influencing disease pathogenesis and progression. Consequently, targeting mitochondrial transfer has emerged as a novel therapeutic strategy for mitochondria-related disorders. This review summarizes the mechanisms and functions of mitochondrial transfer, with a focus on the latest advancements in this field, as well as its therapeutic potential and methodologies for treating human diseases.

References

[1]  Spees, J.L., Olson, S.D., Whitney, M.J. and Prockop, D.J. (2006) Mitochondrial Transfer between Cells Can Rescue Aerobic Respiration. Proceedings of the National Academy of Sciences, 103, 1283-1288.
https://doi.org/10.1073/pnas.0510511103
[2]  Quintana-Cabrera, R. and Scorrano, L. (2023) Determinants and Outcomes of Mitochondrial Dynamics. Molecular Cell, 83, 857-876.
https://doi.org/10.1016/j.molcel.2023.02.012
[3]  Gorman, G.S., Chinnery, P.F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., et al. (2016) Mitochondrial Diseases. Nature Reviews Disease Primers, 2, Article No. 16080.
https://doi.org/10.1038/nrdp.2016.80
[4]  Mishra, P. and Chan, D.C. (2014) Mitochondrial Dynamics and Inheritance during Cell Division, Development and Disease. Nature Reviews Molecular Cell Biology, 15, 634-646.
https://doi.org/10.1038/nrm3877
[5]  Ruby, J.R., Dyer, R.F. and Skalko, R.G. (1969) The Occurrence of Intercellular Bridges during Oogenesis in the Mouse. Journal of Morphology, 127, 307-339.
https://doi.org/10.1002/jmor.1051270304
[6]  Austefjord, M.W., Gerdes, H. and Wang, X. (2014) Tunneling Nanotubes: Diversity in Morphology and Structure. Communicative & Integrative Biology, 7, e27934.
https://doi.org/10.4161/cib.27934
[7]  Liu, Y., Fu, T., Li, G., Li, B., Luo, G., Li, N., et al. (2023) Mitochondrial Transfer between Cell Crosstalk—An Emerging Role in Mitochondrial Quality Control. Ageing Research Reviews, 91, Article 102038.
https://doi.org/10.1016/j.arr.2023.102038
[8]  Babenko, V., Silachev, D., Popkov, V., Zorova, L., Pevzner, I., Plotnikov, E., et al. (2018) Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery. Molecules, 23, Article 687.
https://doi.org/10.3390/molecules23030687
[9]  Chakraborty, R., Nonaka, T., Hasegawa, M. and Zurzolo, C. (2023) Tunnelling Nanotubes between Neuronal and Microglial Cells Allow Bi-Directional Transfer of α-Synuclein and Mitochondria. Cell Death & Disease, 14, Article No. 329.
https://doi.org/10.1038/s41419-023-05835-8
[10]  Marlein, C.R., Piddock, R.E., Mistry, J.J., Zaitseva, L., Hellmich, C., Horton, R.H., et al. (2019) CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Research, 79, 2285-2297.
https://doi.org/10.1158/0008-5472.can-18-0773
[11]  Sinclair, K.A., Yerkovich, S.T., Hopkins, P.M. and Chambers, D.C. (2016) Characterization of Intercellular Communication and Mitochondrial Donation by Mesenchymal Stromal Cells Derived from the Human Lung. Stem Cell Research & Therapy, 7, Article No. 91.
https://doi.org/10.1186/s13287-016-0354-8
[12]  Islam, M.N., Das, S.R., Emin, M.T., Wei, M., Sun, L., Westphalen, K., et al. (2012) Mitochondrial Transfer from Bone-Marrow-Derived Stromal Cells to Pulmonary Alveoli Protects against Acute Lung Injury. Nature Medicine, 18, 759-765.
https://doi.org/10.1038/nm.2736
[13]  Irwin, R.M., Thomas, M.A., Fahey, M.J., Mayán, M.D., Smyth, J.W. and Delco, M.L. (2024) Connexin 43 Regulates Intercellular Mitochondrial Transfer from Human Mesenchymal Stromal Cells to Chondrocytes. Stem Cell Research & Therapy, 15, Article No. 359.
https://doi.org/10.1186/s13287-024-03932-9
[14]  Yao, Y., Fan, X., Jiang, D., Zhang, Y., Li, X., Xu, Z., et al. (2018) Connexin 43-Mediated Mitochondrial Transfer of iPSC-MSCs Alleviates Asthma Inflammation. Stem Cell Reports, 11, 1120-1135.
[15]  Morrison, T.J., Jackson, M.V., Cunningham, E.K., Kissenpfennig, A., McAuley, D.F., O’Kane, C.M., et al. (2017) Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 196, 1275-1286.
https://doi.org/10.1164/rccm.201701-0170oc
[16]  Suh, J., Kim, N., Shim, W., Lee, S., Kim, H., Moon, E., et al. (2023) Mitochondrial Fragmentation and Donut Formation Enhance Mitochondrial Secretion to Promote Osteogenesis. Cell Metabolism, 35, 345-360.E7.
https://doi.org/10.1016/j.cmet.2023.01.003
[17]  Liang, W., Sagar, S., Ravindran, R., Najor, R.H., Quiles, J.M., Chi, L., et al. (2023) Mitochondria Are Secreted in Extracellular Vesicles When Lysosomal Function Is Impaired. Nature Communications, 14, Article No. 5031.
https://doi.org/10.1038/s41467-023-40680-5
[18]  Boudreau, L.H., Duchez, A., Cloutier, N., Soulet, D., Martin, N., Bollinger, J., et al. (2014) Platelets Release Mitochondria Serving as Substrate for Bactericidal Group IIA-Secreted Phospholipase A2 to Promote Inflammation. Blood, 124, 2173-2183.
https://doi.org/10.1182/blood-2014-05-573543
[19]  Clark, M.A. and Shay, J.W. (1982) Mitochondrial Transformation of Mammalian Cells. Nature, 295, 605-607.
https://doi.org/10.1038/295605a0
[20]  Gollihue, J.L., Patel, S.P., Eldahan, K.C., Cox, D.H., Donahue, R.R., Taylor, B.K., et al. (2018) Effects of Mitochondrial Transplantation on Bioenergetics, Cellular Incorporation, and Functional Recovery after Spinal Cord Injury. Journal of Neurotrauma, 35, 1800-1818.
https://doi.org/10.1089/neu.2017.5605
[21]  Lamanilao, G.G., Dogan, M., Patel, P.S., Azim, S., Patel, D.S., Bhattacharya, S.K., et al. (2023) Key Hepatoprotective Roles of Mitochondria in Liver Regeneration. American Journal of Physiology-Gastrointestinal and Liver Physiology, 324, G207-G218.
https://doi.org/10.1152/ajpgi.00220.2022
[22]  Kim, M.J., Hwang, J.W., Yun, C., Lee, Y. and Choi, Y. (2018) Delivery of Exogenous Mitochondria via Centrifugation Enhances Cellular Metabolic Function. Scientific Reports, 8, Article No. 3330.
https://doi.org/10.1038/s41598-018-21539-y
[23]  Borcherding, N. and Brestoff, J.R. (2023) The Power and Potential of Mitochondria Transfer. Nature, 623, 283-291.
https://doi.org/10.1038/s41586-023-06537-z
[24]  Phinney, D.G., Di Giuseppe, M., Njah, J., Sala, E., Shiva, S., St Croix, C.M., et al. (2015) Mesenchymal Stem Cells Use Extracellular Vesicles to Outsource Mitophagy and Shuttle MicroRNAs. Nature Communications, 6, Article No. 8472.
https://doi.org/10.1038/ncomms9472
[25]  Xu, J., Shi, C., Yuan, F., Ding, Y., Xie, Y., Liu, Y., et al. (2024) Targeted Transplantation of Engineered Mitochondrial Compound Promotes Functional Recovery after Spinal Cord Injury by Enhancing Macrophage Phagocytosis. Bioactive Materials, 32, 427-444.
https://doi.org/10.1016/j.bioactmat.2023.10.016
[26]  Baldwin, J.G., Heuser-Loy, C., Saha, T., Schelker, R.C., Slavkovic-Lukic, D., Strieder, N., et al. (2024) Intercellular Nanotube-Mediated Mitochondrial Transfer Enhances T Cell Metabolic Fitness and Antitumor Efficacy. Cell, 187, 6614-6630.E21.
https://doi.org/10.1016/j.cell.2024.08.029
[27]  Kim, S., Kim, M., Lim, M., Kim, J., Kim, H., Yun, C., et al. (2023) Enhancement of the Anticancer Ability of Natural Killer Cells through Allogeneic Mitochondrial Transfer. Cancers, 15, Article 3225.
https://doi.org/10.3390/cancers15123225
[28]  Zhang, H., Yu, X., Ye, J., Li, H., Hu, J., Tan, Y., et al. (2023) Systematic Investigation of Mitochondrial Transfer between Cancer Cells and T Cells at Single-Cell Resolution. Cancer Cell, 41, 1788-1802.E10.
https://doi.org/10.1016/j.ccell.2023.09.003
[29]  Pandya, J.D., Valdez, M., Royland, J.E., MacPhail, R.C., Sullivan, P.G. and Kodavanti, P.R.S. (2020) Age-and Organ-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats. Journal of Aging Research, 2020, Article ID: 7232614.
https://doi.org/10.1155/2020/7232614
[30]  Nasoni, M.G., Carloni, S., Canonico, B., Burattini, S., Cesarini, E., Papa, S., et al. (2021) Melatonin Reshapes the Mitochondrial Network and Promotes Intercellular Mitochondrial Transfer via Tunneling Nanotubes after Ischemic‐Like Injury in Hippocampal HT22 Cells. Journal of Pineal Research, 71, e12747.
https://doi.org/10.1111/jpi.12747
[31]  Borlongan, C., Gonzales-Portillo, B., Lippert, T., Nguyen, H. and Lee, J. (2019) Hyperbaric Oxygen Therapy: A New Look on Treating Stroke and Traumatic Brain Injury. Brain Circulation, 5, 101-105.
https://doi.org/10.4103/bc.bc_31_19
[32]  Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., et al. (2016) Transfer of Mitochondria from Astrocytes to Neurons after Stroke. Nature, 535, 551-555.
https://doi.org/10.1038/nature18928
[33]  Nzigou Mombo, B., Gerbal-Chaloin, S., Bokus, A., Daujat-Chavanieu, M., Jorgensen, C., Hugnot, J., et al. (2017) Mitoception: Transferring Isolated Human MSC Mitochondria to Glioblastoma Stem Cells. Journal of Visualized Experiments, No. 120, Article 55245.
https://doi.org/10.3791/55245
[34]  杨涵琳. 游离线粒体改善化疗后早发性卵巢功能不全模型小鼠的实验研究[D]: [博士学位论文]. 贵阳: 贵州医科大学, 2022.
[35]  Masuzawa, A., Black, K.M., Pacak, C.A., Ericsson, M., Barnett, R.J., Drumm, C., et al. (2013) Transplantation of Autologously Derived Mitochondria Protects the Heart from Ischemia-Reperfusion Injury. American Journal of Physiology-Heart and Circulatory Physiology, 304, H966-H982.
https://doi.org/10.1152/ajpheart.00883.2012
[36]  李震. 线粒体移植对小鼠皮肤烧伤的疗效和机制研究[D]: [硕士学位论文]. 兰州: 兰州大学, 2024.
[37]  Kim, H., Cho, H.B., Lee, S., Park, J., Kim, H.J. and Park, K. (2023) Fusogenic Liposomes Encapsulating Mitochondria as a Promising Delivery System for Osteoarthritis Therapy. Biomaterials, 302, Article 122350.
https://doi.org/10.1016/j.biomaterials.2023.122350
[38]  Westensee, I.N., Brodszkij, E., Qian, X., Marcelino, T.F., Lefkimmiatis, K. and Städler, B. (2021) Mitochondria Encapsulation in Hydrogel‐Based Artificial Cells as ATP Producing Subunits. Small, 17, Article ID: 2007959.
https://doi.org/10.1002/smll.202007959
[39]  Yuan, Y., Yuan, L., Li, L., Liu, F., Liu, J., Chen, Y., et al. (2021) Mitochondrial Transfer from Mesenchymal Stem Cells to Macrophages Restricts Inflammation and Alleviates Kidney Injury in Diabetic Nephropathy Mice via PGC-1α Activation. Stem Cells, 39, 913-928.
https://doi.org/10.1002/stem.3375
[40]  Patel, S.P., Michael, F.M., Arif Khan, M., Duggan, B., Wyse, S., Darby, D.R., et al. (2022) Erodible Thermogelling Hydrogels for Localized Mitochondrial Transplantation to the Spinal Cord. Mitochondrion, 64, 145-155.
https://doi.org/10.1016/j.mito.2022.04.002
[41]  Sun, X., Chen, H., Gao, R., Qu, Y., Huang, Y., Zhang, N., et al. (2023) Intravenous Transplantation of an Ischemic-Specific Peptide-TPP-Mitochondrial Compound Alleviates Myocardial Ischemic Reperfusion Injury. ACS Nano, 17, 896-909.
https://doi.org/10.1021/acsnano.2c05286
[42]  Wu, Z., Chen, L., Guo, W., Wang, J., Ni, H., Liu, J., et al. (2024) Oral Mitochondrial Transplantation Using Nanomotors to Treat Ischaemic Heart Disease. Nature Nanotechnology, 19, 1375-1385.
https://doi.org/10.1038/s41565-024-01681-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133