|
经导管主动脉瓣置换术的应用进展和并发症的分析
|
Abstract:
经导管主动脉瓣置换术(Transcatheter Aortic Valve Replacement, TAVR)作为一种微创治疗手段,在重度主动脉瓣狭窄(Aortic Stenosis, AS)患者中的应用日益广泛。自2002年首次临床应用以来,TAVR技术不断优化,其适应证已从高危患者扩展至中低风险患者,甚至包括二叶式主动脉瓣(Bicuspid Aortic Valve, BAV)患者。近年来,瓣膜材料、输送系统及手术策略的创新进一步提升了TAVR的安全性和有效性。然而,TAVR仍然面临瓣周漏(Paravalvular Leak, PVL)、心脏传导阻滞及永久起搏器植入(Permanent Pacemaker Implantation, PPI)、卒中及冠状动脉阻塞等并发症的挑战,影响其长期预后。本文综述了TAVR的技术进展、适应证扩展、手术入路优化及并发症管理,并探讨了TAVR在低风险患者及BAV患者中的应用前景。随着新型瓣膜设计及围术期管理策略的优化,TAVR的长期疗效有望进一步改善,为更广泛的患者群体提供治疗选择。
Transcatheter aortic valve replacement (TAVR) has become an increasingly widespread minimally invasive treatment for patients with severe aortic stenosis (AS). Since its first clinical application in 2002, TAVR technology has continuously improved, and its indications have expanded from high-risk patients to include intermediate- and low-risk patients, as well as patients with bicuspid aortic valves (BAV). In recent years, innovations in valve materials, delivery systems, and surgical strategies have further enhanced the safety and efficacy of TAVR. However, TAVR still faces challenges such as paravalvular leak (PVL), heart block, permanent pacemaker implantation (PPI), stroke, and coronary artery obstruction, which impact its long-term outcomes. This review summarizes the technological advancements in TAVR, the expansion of indications, optimization of surgical approaches, and the management of complications, while exploring the future application of TAVR in low-risk patients and BAV patients. With the optimization of novel valve designs and perioperative management strategies, the long-term efficacy of TAVR is expected to improve, providing treatment options for a broader range of patient populations.
[1] | Liu, X., He, Y., Liu, C., Wang, L., Gao, F., Yu, L., et al. (2018) First-in-Man Implantation of the Retrievable and Repositionable Venusa-Plus Valve. World Journal of Emergency Medicine, 9, 64-66. https://doi.org/10.5847/wjem.j.1920-8642.2018.01.010 |
[2] | Windecker, S., Okuno, T., Unbehaun, A., Mack, M., Kapadia, S. and Falk, V. (2022) Which Patients with Aortic Stenosis Should Be Referred to Surgery Rather than Transcatheter Aortic Valve Implantation? European Heart Journal, 43, 2729-2750. https://doi.org/10.1093/eurheartj/ehac105 |
[3] | Vahanian, A., Beyersdorf, F., Praz, F., Milojevic, M., Baldus, S., Bauersachs, J., et al. (2022) 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease: Developed by the Task Force for the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Revista Española de Cardiología (English Edition), 75, 524. https://doi.org/10.1016/j.rec.2022.05.006 |
[4] | Edwards, F.H., Cohen, D.J., O’Brien, S.M., Peterson, E.D., Mack, M.J., Shahian, D.M., et al. (2016) Development and Validation of a Risk Prediction Model for In-Hospital Mortality after Transcatheter Aortic Valve Replacement. JAMA Cardiology, 1, 46-52. https://doi.org/10.1001/jamacardio.2015.0326 |
[5] | Chen, S., Redfors, B., Ben-Yehuda, O., Crowley, A., Greason, K.L., Alu, M.C., et al. (2018) Transcatheter versus Surgical Aortic Valve Replacement in Patients with Prior Cardiac Surgery in the Randomized PARTNER 2A Trial. JACC: Cardiovascular Interventions, 11, 2207-2216. https://doi.org/10.1016/j.jcin.2018.08.006 |
[6] | Leon, M.B., Smith, C.R., Mack, M.J., Makkar, R.R., Svensson, L.G., Kodali, S.K., et al. (2016) Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. New England Journal of Medicine, 374, 1609-1620. https://doi.org/10.1056/nejmoa1514616 |
[7] | Van Mieghem, N.M., Deeb, G.M., Søndergaard, L., Grube, E., Windecker, S., Gada, H., et al. (2022) Self-Expanding Transcatheter vs Surgical Aortic Valve Replacement in Intermediate-Risk Patients. JAMA Cardiology, 7, 1000-1008. https://doi.org/10.1001/jamacardio.2022.2695 |
[8] | Mack, M.J., Leon, M.B., Thourani, V.H., Pibarot, P., Hahn, R.T., Genereux, P., et al. (2023) Transcatheter Aortic-Valve Replacement in Low-Risk Patients at Five Years. New England Journal of Medicine, 389, 1949-1960. https://doi.org/10.1056/nejmoa2307447 |
[9] | Forrest, J.K., Deeb, G.M., Yakubov, S.J., Rovin, J.D., Mumtaz, M., Gada, H., et al. (2022) 2-Year Outcomes after Transcatheter versus Surgical Aortic Valve Replacement in Low-Risk Patients. Journal of the American College of Cardiology, 79, 882-896. https://doi.org/10.1016/j.jacc.2021.11.062 |
[10] | Galper, B.Z., Chinnakondepalli, K.M., Wang, K., Magnuson, E.A., Lu, M., Thourani, V.H., et al. (2023) Economic Outcomes of Transcatheter versus Surgical Aortic Valve Replacement in Patients with Severe Aortic Stenosis and Low Surgical Risk: Results from the PARTNER 3 Trial. Circulation, 147, 1594-1605. https://doi.org/10.1161/circulationaha.122.062481 |
[11] | Khan, M.S., Mir, T., Ullah, W., Ali, Z., Idris, O., Khan, G., et al. (2020) Comparing Transcatheter Aortic Valve Replacement (AVR) with Surgical AVR in Lower Risk Patients: A Comprehensive Meta-Analysis and Systematic Review. Cardiology Research, 11, 168-178. https://doi.org/10.14740/cr1046 |
[12] | Otto, C.M., Nishimura, R.A., Bonow, R.O., et al. (2021) 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 143, e72-e227. |
[13] | Thyregod, H.G.H., Jørgensen, T.H., Ihlemann, N., Steinbrüchel, D.A., Nissen, H., Kjeldsen, B.J., et al. (2024) Transcatheter or Surgical Aortic Valve Implantation: 10-Year Outcomes of the NOTION Trial. European Heart Journal, 45, 1116-1124. https://doi.org/10.1093/eurheartj/ehae043 |
[14] | Tchetche, D., de Biase, C., van Gils, L., Parma, R., Ochala, A., Lefevre, T., et al. (2019) Bicuspid Aortic Valve Anatomy and Relationship with Devices: The BAVARD Multicenter Registry. Circulation: Cardiovascular Interventions, 12, e7107. https://doi.org/10.1161/circinterventions.118.007107 |
[15] | Zahr, F., Ramlawi, B., Reardon, M.J., Deeb, G.M., Yakubov, S.J., Song, H.K., et al. (2024) 3-Year Outcomes from the Evolut Low Risk TAVR Bicuspid Study. JACC: Cardiovascular Interventions, 17, 1667-1675. https://doi.org/10.1016/j.jcin.2024.05.017 |
[16] | Makkar, R.R., Yoon, S., Leon, M.B., Chakravarty, T., Rinaldi, M., Shah, P.B., et al. (2019) Association between Transcatheter Aortic Valve Replacement for Bicuspid vs Tricuspid Aortic Stenosis and Mortality or Stroke. Journal of the American Medical Association, 321, 2193-2202. https://doi.org/10.1001/jama.2019.7108 |
[17] | Forrest, J.K., Kaple, R.K., Ramlawi, B., Gleason, T.G., Meduri, C.U., Yakubov, S.J., et al. (2020) Transcatheter Aortic Valve Replacement in Bicuspid versus Tricuspid Aortic Valves from the STS/ACC TVT Registry. JACC: Cardiovascular Interventions, 13, 1749-1759. https://doi.org/10.1016/j.jcin.2020.03.022 |
[18] | Deeb, G.M., Reardon, M.J., Ramlawi, B., Yakubov, S.J., Chetcuti, S.J., Kleiman, N.S., et al. (2022) Propensity-Matched 1-Year Outcomes Following Transcatheter Aortic Valve Replacement in Low-Risk Bicuspid and Tricuspid Patients. JACC: Cardiovascular Interventions, 15, 511-522. https://doi.org/10.1016/j.jcin.2021.10.027 |
[19] | Williams, M.R., Jilaihawi, H., Makkar, R., O’Neill, W.W., Guyton, R., Malaisrie, S.C., et al. (2022) The PARTNER 3 Bicuspid Registry for Transcatheter Aortic Valve Replacement in Low-Surgical-Risk Patients. JACC: Cardiovascular Interventions, 15, 523-532. https://doi.org/10.1016/j.jcin.2022.01.279 |
[20] | Xiong, T., Ali, W.B., Feng, Y., Hayashida, K., Jilaihawi, H., Latib, A., et al. (2022) Transcatheter Aortic Valve Implantation in Patients with Bicuspid Valve Morphology: A Roadmap Towards Standardization. Nature Reviews Cardiology, 20, 52-67. https://doi.org/10.1038/s41569-022-00734-5 |
[21] | Cannata, S., Gandolfo, C., Ribichini, F.L., van Mieghem, N., Buccheri, S., Barbanti, M., et al. (2023) One-Year Outcomes after Transcatheter Aortic Valve Implantation with the Latest-Generation SAPIEN Balloon-Expandable Valve: The S3U Registry. EuroIntervention, 18, 1418-1427. https://doi.org/10.4244/eij-d-22-01022 |
[22] | Nazif, T.M., Cahill, T.J., Daniels, D., McCabe, J.M., Reisman, M., Chakravarty, T., et al. (2021) Real-World Experience with the SAPIEN 3 Ultra Transcatheter Heart Valve: A Propensity-Matched Analysis from the United States. Circulation: Cardiovascular Interventions, 14, e10543. https://doi.org/10.1161/circinterventions.121.010543 |
[23] | 孔祥权, 高晓飞, 张娟, 等. 经导管主动脉瓣置换术相关新瓣膜的研究进展[J]. 华西医学, 2023, 38(9): 1309-1313. |
[24] | Yoon, S., Galo, J., Amoah, J.K., Dallan, L.A.P., Tsushima, T., Motairek, I.K., et al. (2023) Permanent Pacemaker Insertion Reduction and Optimized Temporary Pacemaker Management after Contemporary Transcatheter Aortic Valve Implantation with Self-Expanding Valves (from the Pristine TAVI Study). The American Journal of Cardiology, 189, 1-10. https://doi.org/10.1016/j.amjcard.2022.11.026 |
[25] | Khera, S., Krishnamoorthy, P., Sharma, S.K., Kini, A.S., Dangas, G.D., Goel, S., et al. (2023) Improved Commissural Alignment in TAVR with the Newest Evolut FX Self-Expanding Supra-Annular Valve. JACC: Cardiovascular Interventions, 16, 498-500. https://doi.org/10.1016/j.jcin.2022.10.041 |
[26] | Merdler, I., Case, B., Bhogal, S., Reddy, P.K., Sawant, V., Zhang, C., et al. (2023) Early Experience with the Evolut FX Self-Expanding Valve Vs. Evolut PRO+ for Patients with Aortic Stenosis Undergoing TAVR. Cardiovascular Revascularization Medicine, 56, 1-6. https://doi.org/10.1016/j.carrev.2023.06.003 |
[27] | 王玺, 李怡坚, 欧袁伟翔, 等. 经导管主动脉瓣置换术中Venus A-Valve与进口瓣膜临床应用的比较[J]. 华西医学, 2019, 34(4): 379-384. |
[28] | 张航, 王华君, 石凤梧, 等. 应用Venus A-Plus瓣膜输送系统行经导管主动脉瓣置换术治疗重度主动脉瓣狭窄的回顾性队列研究[J/OL]. 中国胸心血管外科临床杂志, 2024: 1-6. http://kns.cnki.net/kcms/detail/51.1492.R.20240522.0837.006.html, 2025-03-28. |
[29] | Katsaros, O., Apostolos, A., Ktenopoulos, N., Koliastasis, L., Kachrimanidis, I., Drakopoulou, M., et al. (2023) Transcatheter Aortic Valve Implantation Access Sites: Same Goals, Distinct Aspects, Various Merits and Demerits. Journal of Cardiovascular Development and Disease, 11, Article 4. https://doi.org/10.3390/jcdd11010004 |
[30] | Chamandi, C., Abi-Akar, R., Rodés-Cabau, J., Blanchard, D., Dumont, E., Spaulding, C., et al. (2018) Transcarotid Compared with Other Alternative Access Routes for Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 11, e6388. https://doi.org/10.1161/circinterventions.118.006388 |
[31] | Faroux, L., Junquera, L., Mohammadi, S., Del Val, D., Muntané-Carol, G., Alperi, A., et al. (2020) Femoral versus Nonfemoral Subclavian/Carotid Arterial Access Route for Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis. Journal of the American Heart Association, 9, e17460. https://doi.org/10.1161/jaha.120.017460 |
[32] | Lederman, R.J., Babaliaros, V.C., Lisko, J.C., Rogers, T., Mahoney, P., Foerst, J.R., et al. (2022) Transcaval versus Transaxillary TAVR in Contemporary Practice. JACC: Cardiovascular Interventions, 15, 965-975. https://doi.org/10.1016/j.jcin.2022.03.014 |
[33] | 于园园, 李怡坚, 王雅莉, 等. 经导管主动脉瓣置换术手术切开和经皮穿刺入路的临床结果比较[J]. 华西医学, 2022, 37(4): 522-530. |
[34] | Lopez-Pais, J., Lopez-Otero, D., Garcia-Touchard, A., Izquierdo Coronel, B., Antúnez Muiños, P.J., Cia Mendioroz, X., et al. (2020) Impact of Significant Paravalvular Leaks after Transcatheter Aortic Valve Implantation on Anaemia and Mortality. Heart, 107, 497-502. https://doi.org/10.1136/heartjnl-2020-316941 |
[35] | Okuno, T., Tomii, D., Heg, D., Lanz, J., Praz, F., Stortecky, S., et al. (2022) Five-Year Outcomes of Mild Paravalvular Regurgitation after Transcatheter Aortic Valve Implantation. EuroIntervention, 18, 33-42. https://doi.org/10.4244/eij-d-21-00784 |
[36] | Kananathan, S., Perera, L.A., Mohanarajan, M., Sherif, M. and Harky, A. (2022) The Management of Paravalvular Leaks Post Aortic Valve Replacement. Journal of Cardiac Surgery, 37, 2786-2798. https://doi.org/10.1111/jocs.16672 |
[37] | Wang, H. (2024) Risk Factors and Predictive Model for Moderate to Severe Perivalvular Leakage Following Transcatheter Aortic Valve Replacement. American Journal of Translational Research, 16, 7563-7572. https://doi.org/10.62347/vrxs6310 |
[38] | 刘新民, 王墨扬. 中国经导管主动脉瓣置换术临床路径专家共识(2024版) [J]. 中国循环杂志, 2024, 39(11): 1041-1057. |
[39] | Forrest, J.K., Kaple, R.K., Tang, G.H.L., Yakubov, S.J., Nazif, T.M., Williams, M.R., et al. (2020) Three Generations of Self-Expanding Transcatheter Aortic Valves. JACC: Cardiovascular Interventions, 13, 170-179. https://doi.org/10.1016/j.jcin.2019.08.035 |
[40] | Perl, L., Cohen, A., Dadashev, A., Shapira, Y., Vaknin-Assa, H., Yahalom, V., et al. (2021) Long-Term Outcomes of Catheter-Based Intervention for Clinically Significant Paravalvular Leak. EuroIntervention, 17, 736-743. https://doi.org/10.4244/eij-d-20-01206 |
[41] | Popma, J.J., Deeb, G.M., Yakubov, S.J., Mumtaz, M., Gada, H., O’Hair, D., et al. (2019) Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. New England Journal of Medicine, 380, 1706-1715. https://doi.org/10.1056/nejmoa1816885 |
[42] | Ullah, W., Zahid, S., Zaidi, S.R., Sarvepalli, D., Haq, S., Roomi, S., et al. (2021) Predictors of Permanent Pacemaker Implantation in Patients Undergoing Transcatheter Aortic Valve Replacement—A Systematic Review and Meta-Analysis. Journal of the American Heart Association, 10, e20906. https://doi.org/10.1161/jaha.121.020906 |
[43] | Kodali, S., Thourani, V.H., White, J., Malaisrie, S.C., Lim, S., Greason, K.L., et al. (2016) Early Clinical and Echocardiographic Outcomes after SAPIEN 3 Transcatheter Aortic Valve Replacement in Inoperable, High-Risk and Intermediate-Risk Patients with Aortic Stenosis. European Heart Journal, 37, 2252-2262. https://doi.org/10.1093/eurheartj/ehw112 |
[44] | 刘鹏, 鲍贤豪, 马孝琛, 等. 经导管主动脉瓣置换术术后并发症及其治疗进展[J]. 血管与腔内血管外科杂志, 2022, 8(9): 1093-1098. |
[45] | Bagur, R., Solo, K., Alghofaili, S., Nombela-Franco, L., Kwok, C.S., Hayman, S., et al. (2017) Cerebral Embolic Protection Devices during Transcatheter Aortic Valve Implantation. Stroke, 48, 1306-1315. https://doi.org/10.1161/strokeaha.116.015915 |
[46] | Gorla, R., Tua, L., D'Errigo, P., Barbanti, M., Biancari, F., Tarantini, G., et al. (2023) Incidence and Predictors of 30-Day and 6-Month Stroke after TAVR: Insights from the Multicenter OBSERVANT II Study. Catheterization and Cardiovascular Interventions, 102, 1122-1131. https://doi.org/10.1002/ccd.30848 |
[47] | Généreux, P., Piazza, N., Alu, M.C., Nazif, T., Hahn, R.T., Pibarot, P., et al. (2021) Valve Academic Research Consortium 3: Updated Endpoint Definitions for Aortic Valve Clinical Research. Journal of the American College of Cardiology, 77, 2717-2746. https://doi.org/10.1016/j.jacc.2021.02.038 |
[48] | Levi, A., Linder, M., Seiffert, M., Witberg, G., Pilgrim, T., Tomii, D., et al. (2024) The Impact of Cerebral Embolic Protection Devices on Characteristics and Outcomes of Stroke Complicating TAVR. JACC: Cardiovascular Interventions, 17, 666-677. https://doi.org/10.1016/j.jcin.2023.12.033 |
[49] | Bernardi, F.L.M., Dvir, D., Rodes-Cabau, J. and Ribeiro, H.B. (2019) Valve-in-Valve Challenges: How to Avoid Coronary Obstruction. Frontiers in Cardiovascular Medicine, 6, Article 120. https://doi.org/10.3389/fcvm.2019.00120 |
[50] | Mercanti, F., Rosseel, L., Neylon, A., Bagur, R., Sinning, J., Nickenig, G., et al. (2020) Chimney Stenting for Coronary Occlusion during TAVR. JACC: Cardiovascular Interventions, 13, 751-761. https://doi.org/10.1016/j.jcin.2020.01.227 |
[51] | Palmerini, T., Chakravarty, T., Saia, F., Bruno, A.G., Bacchi-Reggiani, M., Marrozzini, C., et al. (2020) Coronary Protection to Prevent Coronary Obstruction during TAVR. JACC: Cardiovascular Interventions, 13, 739-747. https://doi.org/10.1016/j.jcin.2019.11.024 |
[52] | Khan, J.M., Babaliaros, V.C., Greenbaum, A.B., Spies, C., Daniels, D., Depta, J.P., et al. (2021) Preventing Coronary Obstruction during Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 14, 941-948. https://doi.org/10.1016/j.jcin.2021.02.035 |
[53] | Mangieri, A., Gallo, F., Popolo Rubbio, A., Casenghi, M., Ancona, M., Regazzoli, D., et al. (2020) Outcome of Coronary Ostial Stenting to Prevent Coronary Obstruction during Transcatheter Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 13, e9017. https://doi.org/10.1161/circinterventions.120.009017 |
[54] | Lederman, R.J., Babaliaros, V.C., Rogers, T., Khan, J.M., Kamioka, N., Dvir, D., et al. (2019) Preventing Coronary Obstruction during Transcatheter Aortic Valve Replacement. JACC: Cardiovascular Interventions, 12, 1197-1216. https://doi.org/10.1016/j.jcin.2019.04.052 |
[55] | Khan, J.M., Greenbaum, A.B., Babaliaros, V.C., Rogers, T., Eng, M.H., Paone, G., et al. (2019) The BASILICA Trial. JACC: Cardiovascular Interventions, 12, 1240-1252. https://doi.org/10.1016/j.jcin.2019.03.035 |
[56] | Alkhouli, M. and Badhwar, V. (2017) Avoiding Coronary Obstruction after Transcatheter Aortic Valve Replacement: Is It the Skirt or What’s Inside That Counts? The Journal of Thoracic and Cardiovascular Surgery, 153, 819-820. https://doi.org/10.1016/j.jtcvs.2016.11.034 |
[57] | Chu, M.W.A., Bagur, R., Losenno, K.L., Jones, P.M., Diamantouros, P., Teefy, P., et al. (2017) Early Clinical Outcomes of a Novel Self-Expanding Transapical Transcatheter Aortic Valve Bioprosthesis. The Journal of Thoracic and Cardiovascular Surgery, 153, 810-818. https://doi.org/10.1016/j.jtcvs.2016.11.054 |
[58] | Lu, Y., Yin, M., Yang, Y., Wang, W., Dong, L., Yang, X., et al. (2024) A Coronary-Friendly Device Mitigating Risk of Coronary Obstruction in Transcatheter Aortic Valve Replacement. Clinical Interventions in Aging, 19, 1557-1570. https://doi.org/10.2147/cia.s467594 |
[59] | Erlebach, M., Lochbihler, S., Ruge, H., Feirer, N., Trenkwalder, T., Burri, M., et al. (2022) The 10-Year Horizon: Survival and Structural Valve Degeneration in First-Generation Transcatheter Aortic Valves. Archives of Cardiovascular Diseases, 115, 369-376. https://doi.org/10.1016/j.acvd.2022.04.007 |
[60] | Vahanian, A., Beyersdorf, F., Praz, F., Milojevic, M., Baldus, S., Bauersachs, J., et al. (2021) 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. European Heart Journal, 43, 561-632. https://doi.org/10.1093/eurheartj/ehab395 |
[61] | Webb, J.G., Murdoch, D.J., Alu, M.C., Cheung, A., Crowley, A., Dvir, D., et al. (2019) 3-Year Outcomes after Valve-in-Valve Transcatheter Aortic Valve Replacement for Degenerated Bioprostheses. Journal of the American College of Cardiology, 73, 2647-2655. https://doi.org/10.1016/j.jacc.2019.03.483 |
[62] | Nagasaka, T., Patel, V., Suruga, K., Shechter, A., Koren, O., Chakravarty, T., et al. (2025) Age-Related Outcomes of Valve-in-Valve Transcatheter Aortic Valve Replacement for Structural Valve Deterioration. Journal of the American Heart Association, 14, e37168. https://doi.org/10.1161/jaha.124.037168 |
[63] | Tran, J.H., Itagaki, S., Zeng, Q., Leon, M.B., O’Gara, P.T., Mack, M.J., et al. (2024) Transcatheter or Surgical Replacement for Failed Bioprosthetic Aortic Valves. JAMA Cardiology, 9, 631-639. https://doi.org/10.1001/jamacardio.2024.1049 |