全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MicroRNA在胃癌中的研究进展及临床价值
Research Progress and Clinical Value of MicroRNA in Gastric Cancer

DOI: 10.12677/jcpm.2025.42230, PP. 674-681

Keywords: 胃癌,miRNA,生物学标志物,诊断
Gastric Cancer
, miRNA, Biomarkers, Diagnosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

胃癌是全球最常见的癌症之一,严重威胁人类健康。其发病率和死亡率在全球范围内居高不下,特别是在东亚地区,包括中国、日本和韩国等国家。尽管近年来随着医疗技术的进步和治疗手段的创新,胃癌的诊疗水平有所提高,但胃癌的早期诊断仍然面临挑战,许多患者在确诊时已处于晚期,治疗效果不佳,预后较差。因此,深入研究胃癌的发病机制和寻找有效的早期诊断标志物及治疗靶点对于提高胃癌患者的生存率及改善预后具有重要意义。MicroRNA (miRNA)作为一类重要的非编码RNA,大量研究表明其在胃癌的发生、发展过程中发挥着重要作用,近年来已成为胃癌研究的热点之一。本综述旨在总结胃癌相关miRNA的研究进展,并探讨其在胃癌诊断、治疗及预后评估中的潜在应用价值。
Gastric cancer is one of the most common cancers in the world and poses a serious threat to human health. Its morbidity and mortality rates remain high worldwide, especially in East Asia, including countries such as China, Japan, and South Korea. Although the diagnosis and treatment of gastric cancer have improved with the advancement of medical technology and the innovation of treatment methods in recent years, the early diagnosis of gastric cancer is still facing challenges, and many patients are already at an advanced stage when they are diagnosed, with poor treatment effects and poor prognosis. Therefore, it is of great significance to study the pathogenesis of gastric cancer and find effective early diagnostic markers and therapeutic targets to improve the survival rate and prognosis of gastric cancer patients. As an important class of non-coding RNAs, MicroRNAs (miRNAs) have been shown to play an important role in the occurrence and development of gastric cancer, and have become one of the hotspots in gastric cancer research in recent years. The purpose of this review is to summarize the research progress of miRNAs related to gastric cancer and explore their potential application value in the diagnosis, treatment and prognosis evaluation of gastric cancer.

References

[1]  Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2]  Joshi, S.S. and Badgwell, B.D. (2021) Current Treatment and Recent Progress in Gastric Cancer. CA: A Cancer Journal for Clinicians, 71, 264-279.
https://doi.org/10.3322/caac.21657
[3]  Thrift, A.P. and El-Serag, H.B. (2020) Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 18, 534-542.
https://doi.org/10.1016/j.cgh.2019.07.045
[4]  Bouriez, D., Giraud, J., Gronnier, C. and Varon, C. (2018) Efficiency of All-Trans Retinoic Acid on Gastric Cancer: A Narrative Literature Review. International Journal of Molecular Sciences, 19, Article 3388.
https://doi.org/10.3390/ijms19113388
[5]  Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/s0092-8674(04)00045-5
[6]  Lee, Y. (2002) MicroRNA Maturation: Stepwise Processing and Subcellular Localization. The EMBO Journal, 21, 4663-4670.
https://doi.org/10.1093/emboj/cdf476
[7]  Shang, R., Lee, S., Senavirathne, G. and Lai, E.C. (2023) MicroRNAs in Action: Biogenesis, Function and Regulation. Nature Reviews Genetics, 24, 816-833.
https://doi.org/10.1038/s41576-023-00611-y
[8]  Inui, M., Martello, G. and Piccolo, S. (2010) MicroRNA Control of Signal Transduction. Nature Reviews Molecular Cell Biology, 11, 252-263.
https://doi.org/10.1038/nrm2868
[9]  Shi, X., Yang, H. and Birchler, J.A. (2022) MicroRNAs Play Regulatory Roles in Genomic Balance. BioEssays, 45, e2200187.
https://doi.org/10.1002/bies.202200187
[10]  Olcum, M., Tufekci, K.U. and Genc, S. (2021) MicroRNAs in Genetic Etiology of Human Diseases. In: Allmer, J. and Yousef, M., Eds., miRNomics, Springer, 255-268.
https://doi.org/10.1007/978-1-0716-1170-8_13
[11]  Hu, W., Zheng, X., Liu, J., Zhang, M., Liang, Y. and Song, M. (2021) MicroRNA MiR-130a-3p Promotes Gastric Cancer by Targeting Glucosaminyl N-Acetyl Transferase 4 (GCNT4) to Regulate the TGF-β1/SMAD3 Pathway. Bioengineered, 12, 11634-11647.
https://doi.org/10.1080/21655979.2021.1995099
[12]  Ni, Q., Zhang, Y., Yu, J., Hua, R., Wang, Q. and Zhu, J. (2019) MiR‐92b Promotes Gastric Cancer Growth by Activating the DAB2IP-mediated PI3K/AKT Signalling Pathway. Cell Proliferation, 53, e12630.
https://doi.org/10.1111/cpr.12630
[13]  Fu, J., Imani, S., Wu, M. and Wu, R. (2023) MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers, 15, Article 4723.
https://doi.org/10.3390/cancers15194723
[14]  张露娟, 刘全忠, 闫乐. miR-34家族在消化系统肿瘤中的研究进展[J]. 肿瘤学杂志, 2023, 29(6): 519-524.
[15]  Xing, S., Tian, Z., Zheng, W., Yang, W., Du, N., Gu, Y., et al. (2021) Hypoxia Downregulated miR-4521 Suppresses Gastric Carcinoma Progression through Regulation of IGF2 and FOXM1. Molecular Cancer, 20, Article No. 9.
https://doi.org/10.1186/s12943-020-01295-2
[16]  Chang, L., Gao, H., Wang, L., Wang, N., Zhang, S., Zhou, X., et al. (2021) Exosomes Derived from miR-1228 Overexpressing Bone Marrow-Mesenchymal Stem Cells Promote Growth of Gastric Cancer Cells. Aging, 13, 11808-11821.
https://doi.org/10.18632/aging.202878
[17]  Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003) The Nuclear RNase III Drosha Initiates MicroRNA Processing. Nature, 425, 415-419.
https://doi.org/10.1038/nature01957
[18]  Zhang, Z., Pi, J., Zou, D., Wang, X., Xu, J., Yu, S., et al. (2019) MicroRNA Arm-Imbalance in Part from Complementary Targets Mediated Decay Promotes Gastric Cancer Progression. Nature Communications, 10, Article No. 4397.
https://doi.org/10.1038/s41467-019-12292-5
[19]  Zhang, S., Zhang, R., Xu, R., Shang, J., He, H. and Yang, Q. (2020) Microrna-574-5p in Gastric Cancer Cells Promotes Angiogenesis by Targeting Protein Tyrosine Phosphatase Non-Receptor Type 3 (ptpn3). Gene, 733, 144383.
https://doi.org/10.1016/j.gene.2020.144383
[20]  范金阳, 杜波涛, 程志通. miRNA-299-3p对胃癌AGS细胞增殖、凋亡、迁移的影响及其机制[J]. 河南医学研究, 2025, 34(2): 198-203.
[21]  Cavallari, I., Ciccarese, F., Sharova, E., Urso, L., Raimondi, V., Silic-Benussi, M., et al. (2021) The miR-200 Family of MicroRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers, 13, Article 5874.
https://doi.org/10.3390/cancers13235874
[22]  Mirzaei, S., Baghaei, K., Parivar, K., Hashemi, M. and Asadzadeh Aghdaei, H. (2019) The Expression Level Changes of MicroRNAs 200a/205 in the Development of Invasive Properties in Gastric Cancer Cells through Epithelial-Mesenchymal Transition. European Journal of Pharmacology, 857, Article ID: 172426.
https://doi.org/10.1016/j.ejphar.2019.172426
[23]  Huangfu, L., He, Q., Han, J., Shi, J., Li, X., Cheng, X., et al. (2021) MicroRNA-135b/CAMK2D Axis Contribute to Malignant Progression of Gastric Cancer through EMT Process Remodeling. International Journal of Biological Sciences, 17, 1940-1952.
https://doi.org/10.7150/ijbs.58062
[24]  Farasati Far, B., Vakili, K., Fathi, M., Yaghoobpoor, S., Bhia, M. and Naimi-Jamal, M.R. (2023) The Role of MicroRNA-21 (miR-21) in Pathogenesis, Diagnosis, and Prognosis of Gastrointestinal Cancers: A Review. Life Sciences, 316, Article ID: 121340.
https://doi.org/10.1016/j.lfs.2022.121340
[25]  马国明, 左卫微, 贾纯亮, 梁磊, 姚远, 李青科, 刘远廷. miRNA-133b在胃癌组织中的表达及其对MMP-9的影响[J]. 重庆医学, 2020, 49(21): 3624-3629.
[26]  Jelski, W. and Mroczko, B. (2022) Molecular and Circulating Biomarkers of Gastric Cancer. International Journal of Molecular Sciences, 23, Article 7588.
https://doi.org/10.3390/ijms23147588
[27]  Abe, S., Matsuzaki, J., Sudo, K., Oda, I., Katai, H., Kato, K., et al. (2021) A Novel Combination of Serum MicroRNAs for the Detection of Early Gastric Cancer. Gastric Cancer, 24, 835-843.
https://doi.org/10.1007/s10120-021-01161-0
[28]  石运涛. 血清外泌体miR-1246作为胃癌早期诊断的生物标志物研究[D]: [博士学位论文]. 南京: 南京医科大学, 2020.
[29]  Karimi, E., Dehghani, A., Azari, H., Zarei, M., Shekari, M. and Mousavi, P. (2023) Molecular Mechanisms of miR-214 Involved in Cancer and Drug Resistance. Current Molecular Medicine, 23, 589-605.
https://doi.org/10.2174/1566524022666220428112744
[30]  Wang, P., Zhou, Y., Wang, J., Zhou, Y., Zhang, X., Liu, Y., et al. (2024) miR-107 Reverses the Multidrug Resistance of Gastric Cancer by Targeting the CGA/EGFR/GATA2 Positive Feedback Circuit. Journal of Biological Chemistry, 300, Article ID: 107522.
https://doi.org/10.1016/j.jbc.2024.107522
[31]  高红艳, 郭洁, 吴方雄等. miRNA-451通过MRP靶向调控胃癌细胞对5-Fu耐药性的机制研究[J]. 肿瘤防治研究, 2019, 46(12): 1073-1077.
[32]  Tao, S., Gu, J., Wang, Q. and Zheng, L. (2021) Translational Control of BCL-2 Promotes Apoptosis of Gastric Carcinoma Cells. BMC Cancer, 21, Article No. 12.
https://doi.org/10.1186/s12885-020-07711-6
[33]  强占荣. miR-21/PTEN/Akt通路在姜黄素抗胃癌中的作用以及PD98059的抗胃癌协同效应[D]: [博士学位论文]. 北京: 南方医科大学, 2019.
[34]  王磊, 王白燕, 周春光, 等. 不同细胞来源外泌体miRNAs在胃癌进展及诊断和预后中的作用[J]. 中国组织工程研究, 2025, 29(25): 5434-5442.
[35]  Chen, Y., Wu, Y., Yu, S., Yang, H., Wang, X., Zhang, Y., et al. (2020) Deficiency of MicroRNA-628-5p Promotes the Progression of Gastric Cancer by Upregulating PIN1. Cell Death & Disease, 11, Article No. 559.
https://doi.org/10.1038/s41419-020-02766-6
[36]  Zhang, Z., Yu, W., Zheng, M., Liao, X., Wang, J., Yang, D., et al. (2024) Correction: PIN1 Inhibition Sensitizes Chemotherapy in Gastric Cancer Cells by Targeting Stem Cell-Like Traits and Multiple Biomarkers. Molecular Cancer Therapeutics, 23, 743-743.
https://doi.org/10.1158/1535-7163.mct-24-0063
[37]  史爽, 李娟, 米琦, 等. 胃癌miRNAs预后风险评分模型的构建与应用[J]. 山东大学学报(医学版), 2020, 58(7): 47-52, 59.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133