|
基于精英反向学习策略的改进蜣螂优化算法
|
Abstract:
为了提高蜣螂优化算法(DBO)全局搜索过程中的种群多样性和避免陷入局部最优的风险,利用混沌理论和精英反向学习策略提出了一种基于精英反向学习策略的改进蜣螂优化算法(EoDBO)。首先,在蜣螂初始化种群个体位置时引入Sinusoidal map混沌映射策略,以提高寻优前蜣螂种群整体质量,利于加快全局搜索速度;其次,在算法后期采用精英反向学习策略,对部分较优的蜣螂位置进行扰动以调高算法的局部开发能力。利用12个国际基准测试函数测试改进算法的性能,并于DBO算法、麻雀搜索算法(SSA)、灰狼优化算法(GWO)、鲸鱼优化算法(WOA)、黑猩猩优化算法(ChOA)进行对比分析,实验表明EoDBO算法在收敛精度和算法的稳定性方面均变现更优,且收敛速度更快。
In order to improve the population diversity and avoid the risk of falling into local optimum during the global search of Dung Beetle Optimizer (DBO), an improved Dung Beetle Optimizer based on Elite Opposition Learning Strategy (EoDBO) is proposed using chaos theory and elite opposition learning strategy. First, a Sinusoidal map chaotic mapping strategy is introduced in the initialization of individual population positions of dung beetles to improve the overall quality of the dung beetle population before the search for optimality and to facilitate faster global search; second, an elite opposition learning strategy is used in the later stage of the algorithm to perturb some of the better dung beetle positions to tune up the local exploitation capability of the algorithm. The performance of the improved algorithm is tested using 12 international benchmarking functions and compared with DBO algorithm, Sparrow Search Algorithm (SSA), Gray Wolf Optimization Algorithm (GWO), Whale Optimization Algorithm (WOA), and Chimpanzee Optimization Algorithm (ChOA) for analysis. The experiments show that the EoDBO algorithm turns out to be superior in terms of convergence accuracy and stability of the algorithm, and converges faster.
[1] | 朱思峰, 赵明阳, 柴争义. 边缘计算场景中基于粒子群优化算法的计算卸载[J]. 吉林大学学报(工学报), 2022, 52(11): 2698-2705. |
[2] | 赵希梅, 陈广国, 金鸿雁. 基于改进灰狼优化算法的PMSM滑膜自抗扰控制[J]. 电机与控制学报, 2022, 26(11): 132-140. |
[3] | 高琴, 郭玉霞. 基于鲸鱼优化算法的车载成像雷达超分辨设计[J]. 信息技术与信息化, 2022(10): 188-191. |
[4] | 高大唤, 梁宏涛, 杜军威, 等. 改进黑猩猩优化算法的测试数据生成研究[J]. 计算机工程与应用, 2022, 58(23): 83-93. |
[5] | 张泽鹏, 茅云生, 傅何琪, 等. 基于混沌麻雀算法的船用焊接机器人轨迹优化[J]. 船舶工程, 2022, 44(5): 134-140. |
[6] | Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Proceedings of ICNN’95—International Conference on Neural Networks, Perth, 27 November-1 December 1995, 1942-1948. https://doi.org/10.1109/icnn.1995.488968 |
[7] | Krishnanand, K.N. and Ghose, D. (2009) Glowworm Swarm Optimisation: A New Method for Optimising Multi-Modal Functions. International Journal of Computational Intelligence Studies, 1, 93-119. https://doi.org/10.1504/ijcistudies.2009.025340 |
[8] | Yang, X. and Suash Deb, (2009) Cuckoo Search via Lévy Flights. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, 9-11 December 2009, 210-214. https://doi.org/10.1109/nabic.2009.5393690 |
[9] | Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007 |
[10] | Mirjalili, S. and Lewis, A. (2016) The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008 |
[11] | Khishe, M. and Mosavi, M.R. (2020) Chimp Optimization Algorithm. Expert Systems with Applications, 149, Article 113338. https://doi.org/10.1016/j.eswa.2020.113338 |
[12] | Xue, J. and Shen, B. (2020) A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Systems Science & Control Engineering, 8, 22-34. https://doi.org/10.1080/21642583.2019.1708830 |
[13] | 王乐洋, 靳锡波, 许光煜. 震源参数反演的动态惯性殷子的粒子群算法[J]. 武汉大学学报(信息科学版), 2021, 46(4): 510-519. |
[14] | 张文胜, 郝孜奇, 朱冀军, 等. 基于改进灰狼算法优化BP神经网络的短时交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(2): 196-203. |
[15] | 吴泽忠, 宋菲. 基于改进螺旋更新位置模型的鲸鱼优化算法[J]. 系统工程理论与实践, 2019, 39(11): 2928-2944. |
[16] | 兰州新, 何庆. 一种新型的柯西扰动黑猩猩优化算法[J]. 小型微型计算机系统, 2023, 44(4): 715-723. https://kns.cnki.net/kcms/detail/21.1106.TP.20220215.1320.034.html, 2022-02-15. |
[17] | 钱敏, 黄海松. 范青松. 基于反向策略的混沌麻雀搜索算法[J]. 计算机仿真, 2022, 39(8): 333-339. |
[18] | Xue, J. and Shen, B. (2022) Dung Beetle Optimizer: A New Meta-Heuristic Algorithm for Global Optimization. The Journal of Supercomputing, 79, 7305-7336. https://doi.org/10.1007/s11227-022-04959-6 |
[19] | Shen, Y. (2018) Improved Chaos Genetic Algorithm Based State of Charge Determination for Lithium Batteries in Electric Vehicles. Energy, 152, 576-585. https://doi.org/10.1016/j.energy.2018.03.174 |
[20] | Saxena, A. (2019) A Comprehensive Study of Chaos Embedded Bridging Mechanisms and Crossover Operators for Grasshopper Optimisation Algorithm. Expert Systems with Applications, 132, 166-188. https://doi.org/10.1016/j.eswa.2019.04.043 |
[21] | Chen, H., Li, W. and Yang, X. (2020) A Whale Optimization Algorithm with Chaos Mechanism Based on Quasi-Opposition for Global Optimization Problems. Expert Systems with Applications, 158, Article 113612. https://doi.org/10.1016/j.eswa.2020.113612 |
[22] | Qu, C. (2020) Virtual Reconstruction of Random Moving Image Capturing Points Based on Chaos Embedded Particle Swarm Optimization Algorithm. Microprocessors and Microsystems, 75, Article 103069. https://doi.org/10.1016/j.micpro.2020.103069 |
[23] | Saremi, S., Mirjalili, S. and Lewis, A. (2014) Biogeography-Based Optimisation with Chaos. Neural Computing and Applications, 25, 1077-1097. https://doi.org/10.1007/s00521-014-1597-x |
[24] | Tizhoosh, H.R. (2005) Opposition-Based Learning: A New Scheme for Machine Intelligence. International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, 28-30 November 2005, 695-701. https://doi.org/10.1109/cimca.2005.1631345 |
[25] | Seif, Z. and Ahmadi, M.B. (2015) An Opposition-Based Algorithm for Function Optimization. Engineering Applications of Artificial Intelligence, 37, 293-306. https://doi.org/10.1016/j.engappai.2014.09.009 |