全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exploration of the Cuticular and Intestinal Microbiota of Pyrethroid-Resistant Anopheles gambiae at Tokpa-Zougo in the Commune of Abomey-Calavi in Southern Benin

DOI: 10.4236/aim.2025.154014, PP. 181-200

Keywords: Anopheles coluzzii, Pyrethroids Resistance, Intestinal and Cuticular Microbiota, Abomey-Calavi, Benin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Mosquito microbiota have recently been identified as one of the multiple mechanisms underlying insecticide resistance. The aim of this study was therefore to assess the cuticular and intestinal microbial diversity of Anopheles mosquitoes exposed or not to pyrethroids (deltamethrin and permethrin) at Tokpa-Zoungo in the commune of Abomey-Calavi in southern Benin. Methodology: The Anopheles larvae collected in Tokpa-zoungo were transported to the Entomological Research Center of Cotonou where insecticide susceptibility tests and molecular identification on the adult mosquitoes aged 2 to 5 days were carried out. The microbiological analyses were carried out in three steps: the preparation of the mother suspensions of the mosquito microbiota, the culture and isolation on the EMB, MSA and PDA agars and the identification and conservation of the isolated microbial strains. Results: The species Anopheles coluzzii was predominant (62%), with high resistance to pyrethroids. Microbiological analysis revealed that species of the Enterobacteriales family (71.11%) were the most represented. Differences were also noted between the microbial species identified in terms of microbiota and resistance phenotype. Yeasts appeared only on the cuticle surface of Kisumu, and wild strains were not exposed to insecticides. Susceptible mosquitoes had lower intestinal microbial diversity than deltamethrin- and permethrin-resistant mosquitoes and wild strains not exposed to insecticides. Conclusion: The study showed a variation in microbial communities carried by Anopheles coluzzii according to microbiota type and resistance phenotype. But these differences do not allow us to define a microbial identity specific to a given resistance phenotype. Further research is needed to better understand insecticide-microbiota interactions.

References

[1]  WHO (2024) Malaria. Official Website of the World Health Organization (WHO).
https://www.who.int/fr/news-room/fact-sheets/detail/malaria
[2]  WHO (2024) World Malaria Report 2024. Official Website of the World Health Organization (WHO).
https://www.who.int/publications/i/item/9789240104440
[3]  Benin Ministry of Health (2011) Annual Health Statistics 2010.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2010_MS_VF.pdf
[4]  Benin Ministry of Health (2012) Annual Health Statistics 2011.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2011_MS_VF.pdf
[5]  Benin Ministry of Health (2013) Annual Health Statistics 2012.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2012_MS_VF.pdf
[6]  Benin Ministry of Health (2014) Annual Health Statistics 2013.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2013_MS_VF.pdf
[7]  Benin Ministry of Health (2015) Annual Health Statistics 2014.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2014_MS_VF-1.pdf
[8]  Benin Ministry of Health (2016) Annual Health Statistics 2015.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2015_MS_VF-1.pdf
[9]  Benin Ministry of Health (2017) Annual Health Statistics 2016.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2016_MS_VF-1.pdf
[10]  Benin Ministry of Health (2018) Annual Health Statistics 2017.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2017_MS_VF-1.pdf
[11]  Benin Ministry of Health (2019) Annual Health Statistics 2018.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2018_MS_VF.pdf
[12]  Benin Ministry of Health (2020) Annual Health Statistics 2019.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2019_MS_VF-1.pdf
[13]  Benin Ministry of Health (2021) Annual Health Statistics 2020.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire_2020_MS_VF%20(1).pdf
[14]  Benin Ministry of Health (2022) Annual Health Statistics 2021.
https://sante.gouv.bj/assets/ressources/pdf/Annuaire%20statistiques%202021%20MS_VF.pdf
[15]  Benin Ministry of Health (2023) Annual Health Statistics 2022.
https://s3-eu-west-1.amazonaws.com/front-office-resources/production/uploads/publication/attachment/46e5f76a-5f8f-4780-9d32-d51df5c239c2/02be6fdb-3d72-4984-adba-f696163051fd.pdf
[16]  WHO (2024) Vector-Borne Diseases. Official Website of the World Health Organi-zation (WHO).
https://www.who.int/fr/news-room/fact-sheets/detail/vector-borne-diseases
[17]  Pages, F., Orlandipradines, E. and Corbel, V. (2007) Vecteurs du paludisme: Biologie, Diversité, Contrôle et protection individuelle. Médecine et Maladies Infectieuses, 37, 153-161.
https://doi.org/10.1016/j.medmal.2006.10.009
[18]  Simard, F. (2018) La lutte contre les vecteurs: Quel avenir? Biologie Aujourd'hui, 212, 137-145.
https://doi.org/10.1051/jbio/2019006
[19]  Bhatt, S., Weiss, D.J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., et al. (2015) The Effect of Malaria Control on Plasmodium Falciparum in Africa between 2000 and 2015. Nature, 526, 207-211.
https://doi.org/10.1038/nature15535
[20]  WHO (2024) Regional Data and Trends: World Malaria Report 2023. Official Website of the World Health Organization (WHO).
https://www.who.int/publications-detail-redirect/9789240086173
[21]  Akoton, R., Sovegnon, P.M., Djihinto, O.Y., Medjigbodo, A.A., Agonhossou, R., Saizonou, H.M., et al. (2023) Vectorial Competence, Insecticide Resistance in Anopheles Funestus and Operational Implications for Malaria Vector Control Strategies in Benin Republic. Malaria Journal, 22, Article No. 385.
https://doi.org/10.1186/s12936-023-04815-9
[22]  Corbel, V., N’Guessan, R., Brengues, C., Chandre, F., Djogbenou, L., Martin, T., et al. (2007) Multiple Insecticide Resistance Mechanisms in Anopheles gambiae and Culex Quinquefasciatus from Benin, West Africa. Acta Tropica, 101, 207-216.
https://doi.org/10.1016/j.actatropica.2007.01.005
[23]  Djègbè, I., Toponon, F., Gbankoto, A., Tchigossou, G., Djossou-Hessou, D., Dossou, C., et al. (2019) Typologie des gîtes larvaires et résistance des vecteurs du paludisme a la deltaméthrine dans les milieux urbain et rural du département de l’atlantique au sud du bénin: Données préliminaires. European Scientific Journal ESJ, 15, 171-191.
https://doi.org/10.19044/esj.2019.v15n33p171
[24]  Gnanguenon, V., Agossa, F.R., Badirou, K., Govoetchan, R., Anagonou, R., Oke-Agbo, F., et al. (2015) Malaria Vectors Resistance to Insecticides in Benin: Current Trends and Mechanisms Involved. Parasites & Vectors, 8, Article No. 223.
https://doi.org/10.1186/s13071-015-0833-2
[25]  Djègbè, I., et al. (2017) Entomological Surveillance: Population Dynamics and Insecticide Resistance in Anopheles gambiae s.l in Irrigated Rice Farming in Southern Benin. Journal of Applied Biosciences, 111, 10934-10943.
[26]  Zoh, G.M. (2021) Resistance of Anopheles gambiae Mosquitoes to Fludora® Fusion, a New Dual Mode of Action Insecticide Combination for Use as an Intra-Domestic Spray. Adaptive Response and Gene-Environment Interactions. Master’s Thesis, University Grenoble Alpes.
https://theses.hal.science/tel-03708133
[27]  Haubruge, E. and Amichot, M. (1998) Mechanisms Responsible for Insecticide resistance in Insects and Mites. Biotechnology Agronomy Society and Environment, 2, 161-174.
[28]  Fazal, S., Manzoor Malik, R., Zafar Baig, A., Khatoon, N., Aslam, H., Zafar, A., et al. (2023) Role of Mosquito Microbiome in Insecticide Resistance. In: Puerta-Guardo, H. and Manrique-Saide, P., Eds., Mosquito ResearchRecent Advances in Pathogen Interactions, Immunity, and Vector Control Strategies, IntechOpen, 1-27.
https://doi.org/10.5772/intechopen.104265
[29]  Barnard, K., Jeanrenaud, A.C.S.N., Brooke, B.D. and Oliver, S.V. (2019) The Contribution of Gut Bacteria to Insecticide Resistance and the Life Histories of the Major Malaria Vector Anopheles arabiensis (Diptera: Culicidae). Scientific Reports, 9, Article No. 9117.
https://doi.org/10.1038/s41598-019-45499-z
[30]  Heu, K. and Gendrin, M. (2018) Le microbiote de moustique et son influence sur la transmission vectorielle. Biologie Aujourdhui, 212, 119-136.
https://doi.org/10.1051/jbio/2019003
[31]  Duque-Granda, D., Vivero-Gómez, R.J., González Ceballos, L.A., Junca, H., Duque, S.R., Aroca Aguilera, M.C., et al. (2025) Exploring the Diversity of Microbial Communities Associated with Two Anopheles Species during Dry Season in an Indigenous Community from the Colombian Amazon. Insects, 16, Article 269.
https://doi.org/10.3390/insects16030269
[32]  Abdul-Ghani, R., Al-Mekhlafi, A.M. and Alabsi, M.S. (2012) Microbial Control of Malaria: Biological Warfare against the Parasite and Its Vector. Acta Tropica, 121, 71-84.
https://doi.org/10.1016/j.actatropica.2011.11.001
[33]  Dada, N., Lol, J.C., Benedict, A.C., López, F., Sheth, M., Dzuris, N., et al. (2019) Pyrethroid Exposure Alters Internal and Cuticle Surface Bacterial Communities in Anopheles albimanus. The ISME Journal, 13, 2447-2464.
https://doi.org/10.1038/s41396-019-0445-5
[34]  Pelloquin, B., Kristan, M., Edi, C., Meiwald, A., Clark, E., Jeffries, C.L., et al. (2021) Overabundance of Asaia and Serratia Bacteria Is Associated with Deltamethrin Insecticide Susceptibility in Anopheles coluzzii from Agboville, Côte d’Ivoire. Microbiology Spectrum, 9, e0015721.
https://doi.org/10.1128/spectrum.00157-21
[35]  Soltani, A., Vatandoost, H., Oshaghi, M.A., Enayati, A.A. and Chavshin, A.R. (2017) The Role of Midgut Symbiotic Bacteria in Resistance of Anopheles stephensi (Diptera: Culicidae) to Organophosphate Insecticides. Pathogens and Global Health, 111, 289-296.
https://doi.org/10.1080/20477724.2017.1356052
[36]  Siddiqui, J.A., Khan, M.M., Bamisile, B.S., Hafeez, M., Qasim, M., Rasheed, M.T., et al. (2022) Role of Insect Gut Microbiota in Pesticide Degradation: A Review. Frontiers in Microbiology, 13, Article 870462.
https://doi.org/10.3389/fmicb.2022.870462
[37]  Kikuchi, Y., Hayatsu, M., Hosokawa, T., Nagayama, A., Tago, K. and Fukatsu, T. (2012) Symbiont-Mediated Insecticide Resistance. Proceedings of the National Academy of Sciences of the United States of America, 109, 8618-8622.
https://doi.org/10.1073/pnas.1200231109
[38]  Xia, X., Sun, B., Gurr, G.M., Vasseur, L., Xue, M. and You, M. (2018) Gut Microbiota Mediate Insecticide Resistance in the Diamondback Moth, Plutella xylostella (L.). Frontiers in Microbiology, 9, Article 25.
https://doi.org/10.3389/fmicb.2018.00025
[39]  Ahouandjinou, M.J., Sovi, A., Sidick, A., Sewadé, W., Koukpo, C.Z., Chitou, S., et al. (2024) First Report of Natural Infection of Anopheles gambiae S.S. and Anopheles coluzzii by Wolbachia and Microsporidia in Benin: A Cross-Sectional Study. Malaria Journal, 23, Article No. 72.
https://doi.org/10.1186/s12936-024-04906-1
[40]  National Institute for Statistics and Economic Analysis (2016) Ministry of Planning and Development of the Republic of Benin: Notebook of Villages and Town Districts of the Atlantic Department (RGPH-4, 2013).
https://rgph5.instad.bj/wp-content/uploads/2023/03/Cahier-des-villages-et-quartiers-de-ville-Atlantique.pdf
[41]  Muturi, E.J., Dunlap, C., Smartt, C.T. and Shin, D. (2021) Resistance to Permethrin Alters the Gut Microbiota of Aedes Aegypti. Scientific Reports, 11, Article No. 14406.
https://doi.org/10.1038/s41598-021-93725-4
[42]  CDC (2024) Isolation Conservation. Official Website of Centers for Disease Control and Prevention (CDC).
https://www.cdc.gov/cholera/pdf/fr/chapitre-10-conservation-des-isolements.pdf
[43]  Santolamazza, F., Mancini, E., Simard, F., Qi, Y., Tu, Z. and della Torre, A. (2008) Insertion Polymorphisms of SINE200 Retrotransposons within Speciation Islands of Anopheles gambiae Molecular Forms. Malaria Journal, 7, Article No. 163.
https://doi.org/10.1186/1475-2875-7-163
[44]  Berge, J.B., et al. (1996) Insect Resistance to Insecticides: Molecular Mechanisms and Epidemiology. Proceedings of the Society of Biology and Its Affiliates, 190, 445-454.
https://hal.inrae.fr/hal-02686547
[45]  Dada, N., Sheth, M., Liebman, K., Pinto, J. and Lenhart, A. (2018) Whole METAGENOME Sequencing Reveals Links between Mosquito Microbiota and Insecticide Resistance in Malaria Vectors. Scientific Reports, 8, Article No. 2084.
https://doi.org/10.1038/s41598-018-20367-4
[46]  Wang, Y., Shen, R., Xing, D., Zhao, C., Gao, H., Wu, J., et al. (2021) Metagenome Sequencing Reveals the Midgut Microbiota Makeup of Culex Pipiens Quinquefasciatus and Its Possible Relationship with Insecticide Resistance. Frontiers in Microbiology, 12, Article 625539.
https://doi.org/10.3389/fmicb.2021.625539
[47]  Wang, H., Zhang, C., Cheng, P., Wang, Y., Liu, H., Wang, H., et al. (2021) Differences in the Intestinal Microbiota between Insecticide-Resistant and-Sensitive Aedes albopictus Based on Full-Length 16S rRNA Sequencing. MicrobiologyOpen, 10, e1177.
https://doi.org/10.1002/mbo3.1177
[48]  Omoke, D., Kipsum, M., Otieno, S., Esalimba, E., Sheth, M., Lenhart, A., et al. (2021) Western Kenyan Anopheles gambiae Showing Intense Permethrin Resistance Harbour Distinct Microbiota. Malaria Journal, 20, Article No. 77.
https://doi.org/10.1186/s12936-021-03606-4
[49]  Worku, N., Sanou, A., Hartke, J., Morris, M., Cissé, F., Ouédraogo, S., et al. (2025) Insecticide Resistant Anopheles from Ethiopia but Not Burkina Faso Show a Microbiota Composition Shift Upon Insecticide Exposure. Parasites & Vectors, 18, Article No. 17.
https://doi.org/10.1186/s13071-024-06638-2
[50]  Xia, X., Wu, W., Chen, J. and Shan, H. (2023) The Gut Bacterium Serratia marcescens Mediates Detoxification of Organophosphate Pesticide in Riptortus pedestris by Microbial Degradation. Journal of Applied Entomology, 147, 406-415.
https://doi.org/10.1111/jen.13122

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133