全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimization of Biomethane Production from Vegetable Waste Collected in Ouagadougou Markets and “Yaars” Using the Response Surface Method (RSM)

DOI: 10.4236/jep.2025.164014, PP. 273-291

Keywords: Vegetable Waste, Cattle Dung, Response Surface Method, Biomethane, Markets and “Yaars”, Ouagadougou

Full-Text   Cite this paper   Add to My Lib

Abstract:

Large quantity of vegetable waste is produced in Ouagadougou’ markets and “yaars”, causing damage to the environment and, consequently the risks of to some diseases. Reusing methane in the production system could constitute one of the best options for the management of this waste. The objective of this study is to contribute to the energy recovery of vegetable wastes produced in Burkina Faso cities. Thus, a sampling of vegetable wastes was carried out at vegetable sales points in Ouagadougou. The physicochemical characterization of vegetable waste samples was investigated using standard methods. The response surface method through an experimental design implemented by the Expert Design software was used to determine the optimal production conditions of biogas in codigestion with cattle dung. A pilot scale production was carried out in a digester of 5 liters based on the optimal parameters obtained by the response surface method. The biogas was estimated through the volume of the torus and its composition determined by a biogas analyzer. The physicochemical parameters showed that the vegetable wastes contained 84.84% of dry matter (DM), 88.28% of volatile dry matter (VDM), 11.70% of ash, 1.5% of total nitrogen (TN) and 50.73% carbon content. The carbon-to-nitrogen (C/N) ratio was 33.82. These data show that vegetable wastes are potential substrates for anaerobic digestion however, they can be co-digested with animal manures to balance the low nitrogen content. The pilot production tests in the laboratory, based on the optimized model, produced an average volume of biogas equal to 30525.326 cm3 with 57.61% as the proportion of methane. The production yield was 3540 L CH4/kg VDM. These data obtained show that the codigestion of cattle dung with vegetable waste would have an increasing effect on biogas production. Also, the experimental production yield, higher than theoretical yield generated by the optimization equation, allows us to admit that this study has given satisfactory results.

References

[1]  Bon, H., Parrot, L. and Moustier, P. (2010) Sustainable Urban Agriculture in Developing Countries. A Review. Agronomy for Sustainable Development, 30, 21-32.
https://doi.org/10.1051/agro:2008062

[2]  Food and Agricultural Organization of the United Nations (FAO) (2018) Livestock Production Systems Spotlight: Cattle and Poultry Sectors in Burkina Faso.
http://www.fao.org/3/I8492EN/i8492en.pdf

[3]  Institut National de la Statistique et de la Démographie (INSD) (2022) Cinquième recensement général de la population et de l’habitation du Burkina Faso. Rapport, Ouagadougou/Burkina Faso.
[4]  Bassinga, H., Lankoandé, B.Y., Sawadogo, Y. and Soura, A.B. (2024) Geography of the Elderly in Ouagadougou-Burkina Faso. Remses, 9, 67-91.
http://revues.imist.ma/?journal=REMSES&page=index

[5]  Department of Economic and Social Affairs (UN-DESA) (2024) Annual Highlights Report 2023-2024.
https://www.un.org/en/desa

[6]  Bagbila, A.J. (1993) Les marchés urbains de Ouagadougou. Rapport, Université de Ouagadougou, Burkina Faso.
[7]  De Loma-Ossorio, E., Lahoz, C., Luis, F. and Portillo, L.F. (2014) Assessment on the Right to Food in the ECOWAS Region. Food and Agricultural Organization of the United Nations.
https://openknowledge.fao.org/handle/20.500.14283/i4183e

[8]  Diallo, R. (2024) Insalubrité à Ouagadougou, Burkina Faso: Une gestion parfois catastrophique dans certains marchés et yaars.
https://lefaso.net/spip.php?article130356

[9]  Durand, A., Leborgne, G., Robert, C., Barrault, S. and Bort, T. (2020) Gaz à effet de serre-Changements climatiques.
[10]  Le Bris, C. and Coutard, O. (2009) Les réseaux rattrapés par l’environnement? Développement durable et transformations de l’organisation des services urbains. Flux, 74, 6-8.
https://doi.org/10.3917/flux.074.0006

[11]  Thonart, P., Diabaté, S.I., Hiligsmann, S. and Lardinoi, M. (2005) Guide pratique sur la gestion des déchets ménagers et des sites d’enfouissement technique dans les pays du sud. Institut de l’énergie et de l’environnement de la Francophonie (IEPF), 121.
[12]  Deepanraj, B., Sivasubramanian, V. and Jayaraj, S. (2014) Biogas Generation through Anaerobic Digestion Process: An Overview. Research Journal of Chemistry and Environment, 18, 80-93.
[13]  Fagerström, A., Al Seadi, T., Rasi, S. and Briseid, T. (2018) The Role of Anaerobic Digestion and Biogas in the Circular Economy. In: Murphy, J.D., Ed., IEA Bioenergy Task 37, IEA Bioenergy, 1-24.
[14]  Michaud, S., Bernet, N., Buffière, P. and Delgenès, J.P. (2005) Use of the Methane Yield to Indicate the Metabolic Behaviour of Methanogenic Biofilms. Process Biochemistry, 40, 2751-2755.
https://doi.org/10.1016/j.procbio.2004.12.017

[15]  Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F. and Cecchi, F. (2013) Mesophilic and Thermophilic Anaerobic Co-Digestion of Waste Activated Sludge and Source Sorted Biowaste in Pilot-and Full-Scale Reactors. Renewable Energy, 55, 260-265.
https://doi.org/10.1016/j.renene.2012.12.044

[16]  Xie, Y., Chen, J., Xiao, A. and Liu, L. (2017) Antibacterial Activity of Polyphenols: Structure-Activity Relationship and Influence of Hyperglycemic Condition. Molecules, 22, Article 1913.
https://doi.org/10.3390/molecules22111913

[17]  Lo, M., Sonko, E.h.M., Dieng, D., Ndiaye, S., Diop, C., Seck, A., et al. (2020) Co-Composting of Faecal Sludge with Vegetable and Fish Waste in Dakar (Senegal). International Journal of Biological and Chemical Sciences, 13, 2914-2929.
https://doi.org/10.4314/ijbcs.v13i6.38

[18]  Ward, A.J., Hobbs, P.J., Holliman, P.J. and Jones, D.L. (2008) Optimisation of the Anaerobic Digestion of Agricultural Resources. Bioresource Technology, 99, 7928-7940.
https://doi.org/10.1016/j.biortech.2008.02.044

[19]  Kwietniewska, E. and Tys, J. (2014) Process Characteristics, Inhibition Factors and Methane Yields of Anaerobic Digestion Process, with Particular Focus on Microalgal Biomass Fermentation. Renewable and Sustainable Energy Reviews, 34, 491-500.
https://doi.org/10.1016/j.rser.2014.03.041

[20]  Jiang, F., Li, J., Yan, L., Sun, J. and Zhang, S. (2010) Optimizing End-Milling Parameters for Surface Roughness under Different Cooling/Lubrication Conditions. The International Journal of Advanced Manufacturing Technology, 51, 841-851.
https://doi.org/10.1007/s00170-010-2680-9

[21]  Manohar, M., Joseph, J., Selvaraj, T. and Sivakumar, D. (2013) Application of Desirability-Function and RSM to Optimise the Multi-Objectives While Turning Inconel 718 Using Coated Carbide Tools. International Journal of Manufacturing Technology and Management, 27, 218-237.
https://doi.org/10.1504/ijmtm.2013.058899
[22]  Nout, M.J.R., Rombouts, F.M. and Havelaar, A. (1989) Effect of Accelerated Natural Lactic Fermentation of Infant Good Ingredients on Some Pathogenic Microorganisms. International Journal of Food Microbiology, 8, 351-361.
https://doi.org/10.1016/0168-1605(89)90006-8

[23]  AFNOR (1985) Fertilizing Materials and Crop Supports: Sampling, Chemical Analyz-es and Physicochemical Tests. Organic Amendments and Culture Media-Determination of Total Organic Matter-Calcination Method. AFNOR, 1-4.
[24]  Allison, L.E. (1965) Organic Carbon. Methods of Soil Analysis. 2e Partie, American Society of Agronomy.
[25]  Nikiema, M., Somda, M.K., Sawadogo, J.B., Bambara, S., Barsan, N., Maiga, Y., et al. (2024) Optimization for Improved Biomethane Yield from Cashew Nut Hulls through Response Surface Methodology. Biomass Conversion and Biorefinery, 15, 4013-4024.
https://doi.org/10.1007/s13399-024-05577-3

[26]  Homayoonfal, M., Khodaiyan, F. and Mousavi, M. (2015) Modelling and Optimising of Physicochemical Features of Walnut-Oil Beverage Emulsions by Implementation of Response Surface Methodology: Effect of Preparation Conditions on Emulsion Stability. Food Chemistry, 174, 649-659.
https://doi.org/10.1016/j.foodchem.2014.10.117

[27]  Myers, R., Montgomery, D.C. and Anderson-Cook, C.M. (2011) Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 3rd Edition, John Wiley & Sons.
[28]  Quanhong, L. and Caili, F. (2005) Application of Response Surface Methodology for Extraction Optimization of Germinant Pumpkin Seeds Protein. Food Chemistry, 92, 701-706.
https://doi.org/10.1016/j.foodchem.2004.08.042

[29]  Hilkiah Igoni, A., Ayotamuno, M.J., Eze, C.L., Ogaji, S.O.T. and Probert, S.D. (2008) Designs of Anaerobic Digesters for Producing Biogas from Municipal Solid-Waste. Applied Energy, 85, 430-438.
https://doi.org/10.1016/j.apenergy.2007.07.013

[30]  Tong, X., Smith, L.H. and McCarty, P.L. (1990) Methane Fermentation of Selected Lignocellulosic Materials. Biomass, 21, 239-255.
https://doi.org/10.1016/0144-4565(90)90075-u

[31]  Nikiema, M., Sawadogo, J.B., Somda, M.K., Traore, D., Dianou, D. and Traore, A.S. (2016) Optimization of Biomethane Production from Municipal Solid Organic Wastes. International Journal of Biological and Chemical Sciences, 9, 2743-2756.
https://doi.org/10.4314/ijbcs.v9i5.43

[32]  Afilal, M.E., Elasri, O. and Merzak, Z. (2014) Organic Waste Characterization and Evaluation of Its Potential Biogas. Journal of Materials and Environmental Science, 5, 1160-1169.
[33]  Traore, D., Nikiema, M., Somda, M.K., Sawadogo, J.B., Dayeri, D. and Traore, A.S. (2016) Contribution to the Biomethanisation of Plant Biomass: Case of Vegetable Residues in Burkina Faso. International Journal of Biological and Chemical Sciences, 10, 35-47.
https://doi.org/10.4314/ijbcs.v10i1.4

[34]  Ostrem, K. (2004) Greening Waste: Anaerobic Digestion for Treating the Organic Fraction of Municipal Solid Wastes. Thesis in Earth Resources Engineering, Columbia University.
[35]  Deublein, D. and Steinhauser, A. (2008) Biogas from Waste and Renewable Re-sources: An Introduction. WILEY-VCH.
[36]  Yadvika, Santosh, Sreekrishnan, T.R., Kohli, S. and Rana, V. (2004) Enhancement of Biogas Production from Solid Substrates Using Different Techniques––A Review. Bioresource Technology, 95, 1-10.
https://doi.org/10.1016/j.biortech.2004.02.010

[37]  Guarino, G., Carotenutoa, C., Cristofaroa, F., Papab, S., Morronea, B. and Minalea, M. (2016) Does the C/N Ratio Really Affect the Bio-Methane Yield? A Three Years Investigation of Buffalo Manure Digestion. Chemical Engineering Transactions, 49, 463-468.
[38]  Girault, R., Peu, P., Béline, F., Lendormi, T. and Guillaume, S. (2013) Caractéristiques des substrats et interactions dans les filières de co-digestion: Cas particulier des co-substrats d’origine agro-industrielle. Sciences Eaux & Territoires, 12, 44-53.
https://doi.org/10.3917/set.012.0044

[39]  Aboubakar, Boli, Z. and Mbofung, C.M.F. (2016) Etude du potentiel biogaz des déjections animales: Bouses de bovins et fientes de volailles d’un centre zootechnique à Maroua-Cameroun. Revue des Energies Renouvelables, 19, 447-464.
[40]  Chidikofan, D.M.G.F., Adjakpa, J.B., Gnanga, H. and Assouma, N. (2023) Valorization of Digestate from Organic Waste Methanization in Market Gardening in Benin. Revue Ivoirienne des Sciences et Technologie, 41, 11-29.
[41]  Castaing, J., Pouech, P. and Coudure, R. (2002) Digestion anaérobie de lisiers de porcs en mélange avec des déchets agro-industriels. Journées Recherche Porcine, 34, 195-202.
[42]  Lacour, J., Bayard, R., Emmanuel, E. and Gourdon, R. (2011) Evaluation du potentiel de valorisation par digestion anaérobie des gisements de déchets organiques d’origine agricole et assimilés en Haïti. Environnement, Ingénierie & Développement, 60, 31-41.
https://doi.org/10.4267/dechets-sciences-techniques.2890

[43]  Pouech, P., Coudure, R. and Marcato, C.E. (2005). Intérêt de la codigestion pour la valorisation des lisiers et le traitement de déchets fermentescibles à l’échelle d’un territoire. Journées Recherche Porcine, 37, 39-44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133