The present work presents indirect solar drying with or without a tomato drying unit and the mathematical modelling of the indirect solar drying system with or without a storage unit. Heat and mass transfer equations were used to predict the thermal behaviour of solar drying with or without a tomato unit. During the experiment, the tomatoes were dried to an average final moisture content of 0.12 kgwater/kgms with an average initial water content of 17.6 kgwater/kgms. The experimental data were fitted to eight (08) different mathematical thin film drying models. These models were compared using the coefficient of determination
, Ki-square
and the square root of the root mean square error RMSE. The results show that Page’s model best describes the drying curve characteristic of tomatoes. This Page’s model gives a higher value of determination
and lower values of Ki-square
and RMSE = 0.00704, compared with the seven (07) other mathematical methods used to describe the thermal behavior of tomato solar drying.
References
[1]
Toğrul, İ.T. and Pehlivan, D. (2003) Modelling of Drying Kinetics of Single Apricot. JournalofFoodEngineering, 58, 23-32. https://doi.org/10.1016/s0260-8774(02)00329-1
[2]
Tera, S., Sinon, S., KAM, S., Kayaba, H., Sanogo, O. and Stutz, B. (2024) Study of the Performance of an Indirect Forced Convection Solar Dryer Incorporating a Thermal Energy Storage Device on a Granite Bed for Drying Tomatoes. CurrentJournalofAppliedScienceandTechnology, 43, 118-127. https://doi.org/10.9734/cjast/2024/v43i74411
[3]
El-Sebaii, A.A., Aboul-Enein, S., Ramadan, M.R.I. and El-Gohary, H.G. (2002) Empirical Correlations for Drying Kinetics of Some Fruits and Vegetables. Energy, 27, 845-859. https://doi.org/10.1016/s0360-5442(02)00021-x
[4]
Dissa, A.O., Bathiebo, J., Kam, S., Savadogo, P.W., Desmorieux, H. and Koulidiati, J. (2009) Modelling and Experimental Validation of Thin Layer Indirect Solar Drying of Mango Slices. RenewableEnergy, 34, 1000-1008. https://doi.org/10.1016/j.renene.2008.08.006
[5]
Sacilik, K., Keskin, R. and Elicin, A.K. (2006) Mathematical Modelling of Solar Tunnel Drying of Thin Layer Organic Tomato. JournalofFoodEngineering, 73, 231-238. https://doi.org/10.1016/j.jfoodeng.2005.01.025
[6]
Badaoui, O., Hanini, S., Djebli, A., Haddad, B. and Benhamou, A. (2019) Experimental and Modelling Study of Tomato Pomace Waste Drying in a New Solar Greenhouse: Evaluation of New Drying Models. RenewableEnergy, 133, 144-155. https://doi.org/10.1016/j.renene.2018.10.020
[7]
Lamrani, B. and Draoui, A. (2020) Thermal Performance and Economic Analysis of an Indirect Solar Dryer of Wood Integrated with Packed-Bed Thermal Energy Storage System: A Case Study of Solar Thermal Applications. DryingTechnology, 39, 1371-1388. https://doi.org/10.1080/07373937.2020.1750025
[8]
Elsayed, M.M. (1990) Mathematical Modeling of a Thin Layer Solar Kiln. JournalofSolarEnergyEngineering, 112, 196-203. https://doi.org/10.1115/1.2930480
[9]
Zahed, A.H. and Elsayed, M.M. (1994) Transient Performance of a Natural Ventilation Solar Kiln. RenewableEnergy, 4, 189-198. https://doi.org/10.1016/0960-1481(94)90004-3
[10]
Doymaz, İ. (2007) Air-Drying Characteristics of Tomatoes. JournalofFoodEngineering, 78, 1291-1297. https://doi.org/10.1016/j.jfoodeng.2005.12.047
[11]
Esence, T., Desrues, T., Fourmigué, J., Cwicklinski, G., Bruch, A. and Stutz, B. (2019) Experimental Study and Numerical Modelling of High Temperature Gas/Solid Packed-Bed Heat Storage Systems. Energy, 180, 61-78. https://doi.org/10.1016/j.energy.2019.05.012
[12]
Esence, T. (2017) Étude et modélisation des systèmes de stockage thermique de type ré-génératif solide/fluide. Université Grenoble Alpes.
[13]
Essalhi, H., Benchrifa, M., Tadili, R. and Bargach, M.N. (2018) Experimental and Theoretical Analysis of Drying Grapes under an Indirect Solar Dryer and in Open Sun. InnovativeFoodScience&EmergingTechnologies, 49, 58-64. https://doi.org/10.1016/j.ifset.2018.08.002
[14]
Boughali, S., Benmoussa, H., Bouchekima, B., Mennouche, D., Bouguettaia, H. and Bechki, D. (2009) Crop Drying by Indirect Active Hybrid Solar-Electrical Dryer in the Eastern Algerian Septentrional Sahara. SolarEnergy, 83, 2223-2232. https://doi.org/10.1016/j.solener.2009.09.006
[15]
Atalay, H. (2019) Performance Analysis of a Solar Dryer Integrated with the Packed Bed Thermal Energy Storage (TES) System. Energy, 172, 1037-1052. https://doi.org/10.1016/j.energy.2019.02.023