全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Engineering  2025 

Modelling of Indirect Solar Drying with and without a Thermal Storage Unit for Tomatoes

DOI: 10.4236/eng.2025.174016, PP. 259-275

Keywords: Tomato, Solar Drying, Thermal Storage, Mathematical Model, Moisture Content

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present work presents indirect solar drying with or without a tomato drying unit and the mathematical modelling of the indirect solar drying system with or without a storage unit. Heat and mass transfer equations were used to predict the thermal behaviour of solar drying with or without a tomato unit. During the experiment, the tomatoes were dried to an average final moisture content of 0.12 kgwater/kgms with an average initial water content of 17.6 kgwater/kgms. The experimental data were fitted to eight (08) different mathematical thin film drying models. These models were compared using the coefficient of determination R 2 , Ki-square χ 2 and the square root of the root mean square error RMSE. The results show that Page’s model best describes the drying curve characteristic of tomatoes. This Page’s model gives a higher value of determination R 2 =0.9942 and lower values of Ki-square χ 2 =0.02797 and RMSE = 0.00704, compared with the seven (07) other mathematical methods used to describe the thermal behavior of tomato solar drying.

References

[1]  Toğrul, İ.T. and Pehlivan, D. (2003) Modelling of Drying Kinetics of Single Apricot. Journal of Food Engineering, 58, 23-32.
https://doi.org/10.1016/s0260-8774(02)00329-1
[2]  Tera, S., Sinon, S., KAM, S., Kayaba, H., Sanogo, O. and Stutz, B. (2024) Study of the Performance of an Indirect Forced Convection Solar Dryer Incorporating a Thermal Energy Storage Device on a Granite Bed for Drying Tomatoes. Current Journal of Applied Science and Technology, 43, 118-127.
https://doi.org/10.9734/cjast/2024/v43i74411
[3]  El-Sebaii, A.A., Aboul-Enein, S., Ramadan, M.R.I. and El-Gohary, H.G. (2002) Empirical Correlations for Drying Kinetics of Some Fruits and Vegetables. Energy, 27, 845-859.
https://doi.org/10.1016/s0360-5442(02)00021-x
[4]  Dissa, A.O., Bathiebo, J., Kam, S., Savadogo, P.W., Desmorieux, H. and Koulidiati, J. (2009) Modelling and Experimental Validation of Thin Layer Indirect Solar Drying of Mango Slices. Renewable Energy, 34, 1000-1008.
https://doi.org/10.1016/j.renene.2008.08.006
[5]  Sacilik, K., Keskin, R. and Elicin, A.K. (2006) Mathematical Modelling of Solar Tunnel Drying of Thin Layer Organic Tomato. Journal of Food Engineering, 73, 231-238.
https://doi.org/10.1016/j.jfoodeng.2005.01.025
[6]  Badaoui, O., Hanini, S., Djebli, A., Haddad, B. and Benhamou, A. (2019) Experimental and Modelling Study of Tomato Pomace Waste Drying in a New Solar Greenhouse: Evaluation of New Drying Models. Renewable Energy, 133, 144-155.
https://doi.org/10.1016/j.renene.2018.10.020
[7]  Lamrani, B. and Draoui, A. (2020) Thermal Performance and Economic Analysis of an Indirect Solar Dryer of Wood Integrated with Packed-Bed Thermal Energy Storage System: A Case Study of Solar Thermal Applications. Drying Technology, 39, 1371-1388.
https://doi.org/10.1080/07373937.2020.1750025
[8]  Elsayed, M.M. (1990) Mathematical Modeling of a Thin Layer Solar Kiln. Journal of Solar Energy Engineering, 112, 196-203.
https://doi.org/10.1115/1.2930480
[9]  Zahed, A.H. and Elsayed, M.M. (1994) Transient Performance of a Natural Ventilation Solar Kiln. Renewable Energy, 4, 189-198.
https://doi.org/10.1016/0960-1481(94)90004-3
[10]  Doymaz, İ. (2007) Air-Drying Characteristics of Tomatoes. Journal of Food Engineering, 78, 1291-1297.
https://doi.org/10.1016/j.jfoodeng.2005.12.047
[11]  Esence, T., Desrues, T., Fourmigué, J., Cwicklinski, G., Bruch, A. and Stutz, B. (2019) Experimental Study and Numerical Modelling of High Temperature Gas/Solid Packed-Bed Heat Storage Systems. Energy, 180, 61-78.
https://doi.org/10.1016/j.energy.2019.05.012
[12]  Esence, T. (2017) Étude et modélisation des systèmes de stockage thermique de type ré-génératif solide/fluide. Université Grenoble Alpes.
[13]  Essalhi, H., Benchrifa, M., Tadili, R. and Bargach, M.N. (2018) Experimental and Theoretical Analysis of Drying Grapes under an Indirect Solar Dryer and in Open Sun. Innovative Food Science & Emerging Technologies, 49, 58-64.
https://doi.org/10.1016/j.ifset.2018.08.002
[14]  Boughali, S., Benmoussa, H., Bouchekima, B., Mennouche, D., Bouguettaia, H. and Bechki, D. (2009) Crop Drying by Indirect Active Hybrid Solar-Electrical Dryer in the Eastern Algerian Septentrional Sahara. Solar Energy, 83, 2223-2232.
https://doi.org/10.1016/j.solener.2009.09.006
[15]  Atalay, H. (2019) Performance Analysis of a Solar Dryer Integrated with the Packed Bed Thermal Energy Storage (TES) System. Energy, 172, 1037-1052.
https://doi.org/10.1016/j.energy.2019.02.023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133