This work aims to characterize the physical, chemical, and thermal properties of hazelnut shells of the “Coula edulis” variety, originating from the south of Cameroon. The samples were divided into two zones (polar and equatorial) to study absorption and drying under four isotherms. The analyses allowed for the determination of the diffusion coefficient, the corrected diffusion coefficient, the relative humidity rate (RHR), and the activation energy using the gravimetric method. The results show that the relative humidity rate (RHR), of the polar region is higher than that of the equatorial region, while the diffusion coefficients and corrected diffusion gradually decrease. Among the models tested, the Page model best predicts humidity variations, while the Newton and Lewis models stand out for describing the drying phenomenon. “Coula edulis” has a dense structure with low porosity and limited water absorption, demonstrating their mechanical strength and dimensional stability. FTIR analysis highlights the presence of major lignocellulosic compounds (cellulose, hemicellulose, and lignin), while XRD reveals moderate crystallinity associated with mineral phases. ATG/DTG confirms good thermal stability up to high temperatures. These properties position the “Coula edulis” shells as a promising material for applications in bio-composites, thermal and acoustic insulation, or even as sustainable materials with a view to a circular economy.
References
[1]
Antwi-Boasiako, C. and Glalah, M. (2021) Physico-Combustion Characteristics and Suitability of Six Carbonized Tropical Hardwoods as Biofuels for Domestic and Industrial Applications. Biomass and Bioenergy, 153, Article 106208. https://doi.org/10.1016/j.biombioe.2021.106208
[2]
Fotang, C., Dutton, P., Bröring, U., Roos, C., Willie, J., Angwafo, T.E., et al. (2023) Tool Use by Nigeria-Cameroon Chimpanzees for Driver Ant Predation in Kom-Wum Forest Reserve, North-West Region Cameroon. Folia Primatologica, 94, 73-85. https://doi.org/10.1163/14219980-bja10006
[3]
Zam, J.F., Biwole, A.B., Eyinga, J.J.B., Fongnzossie, E.F., Bessike, G.J., Mouangue, R., et al. (2024) Determining the Quality of Wood Charcoals as a Bioenergy Source in Humid Tropical Regions of Central Africa: The Effect of Carbonized Wood and Storage Time. Biomass Conversion and Biorefinery, 15, 6971-6987. https://doi.org/10.1007/s13399-024-05763-3
[4]
Kamdem, N.G., Sergeant, S., Vercruysse, C., Deblauwe, V., Sonké, B. and Hardy, O.J. (2024) Development and Characterization of Nuclear Microsatellite Markers for the African Walnut Coula edulis Baill (Coulaceae). Molecular Biology Reports, 51, Article No. 438. https://doi.org/10.1007/s11033-024-09373-0
[5]
Yves, O., Josiane, E.Y., Latran, O.J.P., Michel, E. and Didace, M.T.M. (2024) Study of the Nutritional Value of Coula edulis Kernels from Sembé (Republic of Congo). International Journal of Frontline Research in Science and Technology, 3, 1-7. https://doi.org/10.56355/ijfrst.2024.3.1.0042
[6]
Josiah, N.E., Zudonu, O.C. and Onyeji, C.C. (2020) Phytochemical Analysis, Antioxidant and Antimicrobial Studies of Ethanol Extract of Coula edulis Seed Shell. GSC Biological and Pharmaceutical Sciences, 12, 48-53. https://doi.org/10.30574/gscbps.2020.12.1.0056
[7]
Kepawou, M.G., Akamba, B.D.A., Kamdem, M.H.K., Piebeng, C.Q.N., Chimeze, V.W.N., Ebouel, F.L.E., Mmutlane, E.M., Ndinteh, D.T., Mbazoa, C.D., Ngondi, J.L. and Wandji, J. (2024) Anti-Hyperglycemic Effect of Two Terpenoids Isolated from Coula edulis on Normoglycemic Rats and in Silico Study of Their Potential Inhibitors on Α-Amylase and Dipeptidylpeptidase 4. Journal of Drug Delivery and Therapeutics, 14, 147-157. https://doi.org/10.22270/jddt.v14i2.6406
[8]
Bopenga, C.S.A.B., Degboevi, H.M., Candelier, K., Engonga, E.P., Dumarçay, S., Thévenon, M.F., Charbonnier, C.G. and Gérardin, P. (2021) Characterization of Extracts from the Bark of the Gabon Hazel Tree (Coula edulis Baill) for Antioxidant, Antifungal and Anti-Termite Products. Journal of Renewable Materials, 9, 17-33. https://doi.org/10.32604/jrm.2021.013366
[9]
Yoca, J.E., Ossoko, J.P.L., Okandza, Y. and Tsieri, M.D.M. (2024) Fatty Acid Composition of Hazelnut Kernel Oil from Coula edulis Collected in the Republic of Congo. Food and Nutrition Sciences, 15, 290-297. https://doi.org/10.4236/fns.2024.154019
[10]
Beyegue, E., Azantsa, B.G.K., Mbong, A.M. and Oben, J.E. (2021) Inhibition of Digestive Enzymes, Antioxidant and Free Radical Scavenging Capacities of Stem Bark Extracts of Coula edulis Baill (Olacaceae). Journal of Food Research, 10, 1-17. https://doi.org/10.5539/jfr.v10n5p1
[11]
Jana, U.K. and Patra, K.K. (2024) Seasonal Variations in the Antioxidant and Phytochemical Composition of Five Wild Edible Plants from Paschim Medinipur: Implications for Nutritional Value. International Journal for Multidisciplinary Research, 6, 1-3. https://doi.org/10.36948/ijfmr.2024.v06i01.12070
[12]
Moupela, C., Doucet, J., Daïnou, K., Meunier, Q., Vermeulen, C. and Beauchêne, J. (2013) Essais de propagation par semis et marcottage aérien de Coula edulis Baill. et perspectives pour sa domestication. Bois & Forets des Tropiques, 318, 3-13. https://doi.org/10.19182/bft2013.318.a20516
[13]
Clark, J. and Linares-Matás, G. (2023) Seasonal Resource Categorization and Behavioral Adaptation among Chimpanzees: Implications for Early Hominin Carnivory. Journal of Anthropological Sciences, 101, 1-35.
[14]
Janani, S., Kulanthaivel, P., Sowndarya, G., Srivishnu, H. and Shanjayvel, P.G. (2022) Study of Coconut Shell as Coarse Aggregate in Light Weight Concrete—A Review. Materials Today: Proceedings, 65, 2003-2006. https://doi.org/10.1016/j.matpr.2022.05.329
[15]
Koops, K., Akankwasa, W., Camara, H.D., Fitzgerald, M., Keir, A., Mamy, G., et al. (2024) Flexible Grouping Patterns in a Western and Eastern Chimpanzee Community. American Journal of Primatology, 86, e23593. https://doi.org/10.1002/ajp.23593
[16]
Wang, Z., Yan, J., Pawley, M., Brunton, D.H., Qu, J., Grueter, C.C., et al. (2024) Do Degraded Grasslands Provide a Better Habitat for Plateau Pika?—Testing the Nutritional Hypothesis. Agriculture, Ecosystems & Environment, 367, Article 108993. https://doi.org/10.1016/j.agee.2024.108993
[17]
Ekissi, G.S.E., Tanoh, K.M., Fagbohoun, B.J., Yapi, J.C. and Kouame, P.L. (2019) Physical Parameters of African Hazelnut (Coula edulis B.) and Effect of Cooking Time on Physicochemical Properties. Scholars International Journal of Chemistry and Material Sciences, 2, 23-30.
[18]
Balogoun, C., Bawa, M., Osseni, S. and Aina, M. (2015) Préparation des charbons actifs par voie chimique à l’acide phosphorique à base de coque de noix de coco. International Journal of Biological and Chemical Sciences, 9, 563-580. https://doi.org/10.4314/ijbcs.v9i1.48
[19]
Douh, C., Malonga, L.M., N’zala, D., Mabengo, B.C., Moussoumbou, C., Ndzaï, S.F., et al. (2023) Regeneration Potential of Woody Species at the Side of Secondary Roads Post-Logging of Loundoungou-Toukoulaka Forest Management Unit, Republic of the Congo. Natural Resources, 14, 102-120. https://doi.org/10.4236/nr.2023.147008
[20]
Offiong, E. and O Otu, D. (2023) Evaluation of Timber Trees Producing Valuable Fruits and Seeds in Cross River State. Global Journal of Agricultural Sciences, 22, 1-5. https://doi.org/10.4314/gjass.v22i1.1
[21]
Andika, R., Arinana, A., Sari, R.K., Rahmawati, A.I. and Himmi, S.K. (2025) Antitermite Activity of Eucalyptus Pellita Bark Extract. Jurnal Sylva Lestari, 13, 32-44. https://doi.org/10.23960/jsl.v13i1.1023
[22]
García Carrasco, J. and Donoso González, M. (2022) Al alba de la humanización: Cultura proyecta sombra de poliedro, género de mujer y práctica de magisterio. Revista Española de Pedagogía, 80, 251-267. https://doi.org/10.22550/rep80-2-2022-05
[23]
Ntinkam, C.A., Dika, J.M. and Kede, C.M. (2024) Green Synthesis and Physicochemical Characterization of an Eco-Friendly Zero-Valent Iron Biochar Based on Coula edulis Shell. Materials Advances, 6, 184-195.
[24]
Steven, S., Pasymi, P., Hernowo, P., Restiawaty, E. and Bindar, Y. (2023) Investigation of Rice Husk Semi-Continuous Combustion in Suspension Furnace to Produce Amorphous Silica in Ash. Biomass Conversion and Biorefinery, 14, 25757-25772. https://doi.org/10.1007/s13399-023-04777-7
[25]
Olatunji, K.O., Mootswi, K.D., Olatunji, O.O., Zwane, M.I., van Rensburg, N.J. and Madyira, D.M. (2025) Anaerobic Co-Digestion of Food Waste and Groundnut Shells: Synergistic Impact Assessment and Kinetic Modeling. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-025-02904-1
[26]
Yobo, C.M., Awono, A. and Ingram, V. (2020) Understanding the Coula edulis, Dacryodesbuettneri and Irvingiagabonensis Non-Timber Forest Product Value Chains from Makokou, North-East Gabon from a Gender Perspective. International Forestry Review, 22, 339-353. https://doi.org/10.1505/146554820830405672
[27]
Barrera Hernandez, J.C., Sagastume Gutierrez, A., Ramírez-Contreras, N.E., Cabello Eras, J.J., García-Nunez, J.A., Barrera Agudelo, O.R., et al. (2024) Biomass-Based Energy Potential from the Oil Palm Agroindustry in Colombia: A Path to Low Carbon Energy Transition. Journal of Cleaner Production, 449, Article 141808. https://doi.org/10.1016/j.jclepro.2024.141808
[28]
Madhiyanon, T., Phila, A. and Soponronnarit, S. (2009) Models of Fluidized Bed Drying for Thin-Layer Chopped Coconut. Applied Thermal Engineering, 29, 2849-2854. https://doi.org/10.1016/j.applthermaleng.2009.02.003
[29]
Isa, J. and Jimoh, K.A. (2021) Mathematical Modelling of Drying Characteristics of Coconut Slices. Turkish Journal of Agricultural Engineering Research, 2, 363-375. https://doi.org/10.46592/turkager.2021.v02i02.010
[30]
Sahari, Y., Anuar, M.S., Mohd Nor, M.Z., Abdul Ghani, N.H. and Mohd Tahir, S. (2023) Progress, Trends and Development of Drying Studies on Coconut Kernel Products: A Review. Pertanika Journal of Science and Technology, 31, 2621-2644. https://doi.org/10.47836/pjst.31.5.30
[31]
Ndapeu, D., Njeugna, E., Bistac, S.B., Drean, J.Y., Fogue, M. and Foba, J.N. (2013) Experimental Study of the Drying Kinetics of the Coconut Shells (Nucifera) of Cameroon. Materials Sciences and Applications, 4, 822-830. https://doi.org/10.4236/msa.2013.412105
[32]
Ndapeu, D., Njeugna, E., Sikame, N.R., Bistac, S.B., Drean, J.Y. and Fogue, M. (2016) Experimental Study of the Water Absorption Kinetics of the Coconut Shells (Nucifera) of Cameroun. Materials Sciences and Applications, 07, 159-170. https://doi.org/10.4236/msa.2016.73016
[33]
Koungang, B.M.G., Ndapeu, D., Tchemou, G., Mejouyo, P.W.H., Ntcheping, B.W., Foba, J.T., et al. (2020) Physical, Water Diffusion and Micro-Structural Analysis of “Canarium schweinfurthii Engl”. Materials Sciences and Applications, 11, 626-643. https://doi.org/10.4236/msa.2020.119042
[34]
Parisi, S., Parisi, C. and Varghese, S.M. (2024) Value Addition and Coconut-Based Beverages: Current Perspectives. Beverages, 10, 14. https://doi.org/10.3390/beverages10010014
[35]
Defo, N., Sikame, R.N.T., Huisken, W.P.M., Ndapeu, D., Tido, S.T., Bistac-Brogly, S., et al. (2023) Development and Characterization of Agglomerated Abrasives Based on Agro-Industrial By-Products. Journal of Natural Fibers, 20, Article 2178579. https://doi.org/10.1080/15440478.2023.2178579
[36]
Defo, N., Harzallah, O., Nicodème Tagne Sikame, R., Njeugna, E. and Bistac, S. (2024) Effect of Alkaline Treatment on Hard Vegetable Shells on the Properties of Biobased Abrasive Wheels. Composites Part A: Applied Science and Manufacturing, 184, Article 108278. https://doi.org/10.1016/j.compositesa.2024.108278
[37]
Zue, M., Mekui, M. and Eba, F. and Ondo A. (2020) Study of the Adsorption Equilibrium of Methylene Blue from Aqueous Solution onto Activated Carbon of Coulaedulis Nut Shells. Research Journal of Chemistry and Environment, 12, 40-50.
[38]
Beyegue, E., Youovop, J.F., Takuissu, G.R., Ndoue, N.E., Mbappe, F.E., Edou, F., et al. (2023) Acute and Sub-Chronic Toxicity Evaluation of the Ethanolic Extract of Coula edulis B., (Olacaceae) Stem Bark. Asian Journal of Research in Medical and Pharmaceutical Sciences, 12, 156-172. https://doi.org/10.9734/ajrimps/2023/v12i4239
[39]
Libog, L., Biyeme, F., Betené, A.D.O., Biwolé, A.B., Ndiwe, B., Mbang, J.P.E., et al. (2023) Influence of the Extraction Location on the Physical and Mechanical Properties of the Pseudo-Trunk Banana Fibers. Journal of Natural Fibers, 20, Article 2204451. https://doi.org/10.1080/15440478.2023.2204451
[40]
Mbou Tiaya, E., Huisken Mejouyo, P.W., Ndema Ewane, P.A., Damfeu, C., Meukam, P. and Njeugna, E. (2023) Effect of Particle Sizes on Physical, Thermal and Mechanical Behavior of a Hybrid Composite with Polymer Matrix with Raffia Vinifera Cork and Bambusa Vulgaris. Polymer Bulletin, 81, 275-295. https://doi.org/10.1007/s00289-023-04702-y
[41]
Meziane, S. (2013) Modélisation de la cinétique du séchage convectif du grignon d’olive. Journal of Renewable Energies, 16, 379-387. https://doi.org/10.54966/jreen.v16i2.387
[42]
Fufa, D.D., Bekele, T., Tamene, A. and Bultosa, G. (2025) Drying Kinetic Models, Thermodynamics, Physicochemical Qualities, and Bioactive Compounds of Avocado (Persea americana Mill. Hass Variety) Seeds Dried Using Various Drying Methods. Heliyon, 11, e41058. https://doi.org/10.1016/j.heliyon.2024.e41058
[43]
Singh, S., Kawade, S., Dhar, A. and Powar, S. (2022) Analysis of Mango Drying Methods and Effect of Blanching Process Based on Energy Consumption, Drying Time Using Multi-Criteria Decision-Making. Cleaner Engineering and Technology, 8, Article 100500. https://doi.org/10.1016/j.clet.2022.100500
[44]
Daud, N.F.S., Mohd Said, F., Mohd Mohyiddin, I., Sy Mohamad, S.F., Md Zin, N.H., Ahmad Zakil, F., et al. (2024) Investigating the Impact of Blanching and Salt Treatment on the Drying Kinetics of Oyster Mushrooms. Bioresource Technology Reports, 27, Article 101943. https://doi.org/10.1016/j.biteb.2024.101943
[45]
Nimjieu, H.T., Rodrigue, S.T.N., Roussel, N.T.P., William, H.M.P., Stanislas, T.T., Medard, F., et al. (2023) Analytical and Numerical Investigation of Water Diffusion through Raffia Vinifera Pith. Journal of Natural Fibers, 20, Article 2164105. https://doi.org/10.1080/15440478.2022.2164105
[46]
Takoumbe, C., Zobo Mfomo, J., Biwole, A.B., Mbou Tiaya, E., Mono, J.A., Pokem Nguimjeu, P.H., et al. (2024) Effect of Reinforcement Ratio and Particle Size on the Physical and Mechanical Performance of Epoxy Matrix Panels and Waste Wood from Iroko Chlorophora excelsa from Cameroon. Advances in Materials Science and Engineering, 2024, Article ID: 9915731. https://doi.org/10.1155/2024/9915731
[47]
Mejouyo, P.W.H., Harzallah, O., Tagne, N.R.S., Ndapeu, D., Tchemou, G., Drean, J.Y., et al. (2021) Physical and Mechanical Characterization of Several Varieties of Oil Palm Mesocarp Fibers Using Different Cross-Sectional Assumptions. Journal of Natural Fibers, 18, 175-191. https://doi.org/10.1080/15440478.2019.1612813
[48]
Youbi, S.B.T., Tagne, N.R.S., Harzallah, O., Huisken, P.W.M., Stanislas, T.T., Njeugna, E., et al. (2022) Effect of Alkali and Silane Treatments on the Surface Energy and Mechanical Performances of Raphia vinifera Fibres. Industrial Crops and Products, 190, Article 115854. https://doi.org/10.1016/j.indcrop.2022.115854
[49]
Chattaraj, S., Samantaray, A., Ganguly, A. and Thatoi, H. (2025) Employing Plant Growth-Promoting Rhizobacteria for Abiotic Stress Mitigation in Plants: With a Focus on Drought Stress. Discover Applied Sciences, 7, Article No. 68. https://doi.org/10.1007/s42452-025-06468-6
[50]
Ella Nkogo, L., Mikala Mouendou, M.S., Dumarçay, S., Edou Engonga, P. and Gérardin, P. (2024) Phytochemical Study, FTIR and GC-MS Characterization and Evaluation of the Antioxidant Activity of Letestuadurissima Extracts. Forests, 15, Article 429. https://doi.org/10.3390/f15030429
[51]
Ni, Z., Song, Z., Bi, H., Jiang, C., Sun, H., Qiu, Z., et al. (2023) The Effect of Cellulose on the Combustion Characteristics of Coal Slime: TG-FTIR, Principal Component Analysis, and 2D-COS. Fuel, 333, Article 126310. https://doi.org/10.1016/j.fuel.2022.126310
[52]
Li, J., Gao, J., Fang, J., Ling, T., Xia, M., Cao, X., et al. (2023) Environmental-friendly Regenerated Lignocellulose Functionalized Cotton Fabric to Prepare Multi-Functional Degradable Membrane for Efficient Oil-Water Separation and Solar Seawater Desalination. Scientific Reports, 13, Article No. 5251. https://doi.org/10.1038/s41598-023-32566-9
[53]
Arromdee, P. and Ninduangdee, P. (2022) Combustion Characteristics of Pelletized-Biomass Fuels: A Thermogravimetric Analysis and Combustion Study in a Fluidized-Bed Combustor. Energy, Ecology and Environment, 8, 69-88. https://doi.org/10.1007/s40974-022-00263-4
[54]
Taha, M.A., Gad, S.A. and Youness, R.A. (2025) Development of Fe/SiBr/Si3N4/silica Fume Nanocomposites from Recycled Metal Waste for Industrial Applications. Scientific Reports, 15, Article No. 1529. https://doi.org/10.1038/s41598-024-81657-8
[55]
Yang, T., Huang, B., Zhan, C., Jiang, C., Zhang, L., Zhao, X., et al. (2025) Mechanical Properties and Mechanisms of Soda Residue and Fly Ash Stabilized Soil. Scientific Reports, 15, Article No. 1103. https://doi.org/10.1038/s41598-024-84170-0
[56]
Zaidi, R., Khan, S.U., Farooqi, I.H., Ahmed, F., Alsulami, A., Azam, A., et al. (2025) Performance, Isotherm, Kinetics and Mechanism of Simultaneous Removal of Cr(VI), Cu(II) and F Ions by CeO2-MgO Binary Oxide Nanomaterials. Scientific Reports, 15, Article No. 1431. https://doi.org/10.1038/s41598-024-78830-4