|
湖泊内源磷钝化材料的研究现状
|
Abstract:
通常认为,磷是造成湖泊富营养化的关键因子,控制其含量是湖泊治理的关键。然而,在外源磷负荷得到有效控制时,沉积物中的内源磷仍可能维持湖泊富营养化状态。底泥原位钝化技术因其操作性强、控磷效果明显,而被广泛用作湖泊内源磷的控制手段。本文综述了近年来关于湖泊沉积物磷钝化材料的研究状况,包括常见钝化材料的种类、钝化控磷的环境影响因素,以及存在的问题,并对未来研究方向进行了展望,以期为湖泊沉积物污染治理提供科学依据和技术支持。
It is generally believed that phosphorus is the key factor causing lake eutrophication, and controlling its content is the key to lake management. However, when the external phosphorus load is effectively controlled, the endogenous phosphorus in the sediment may still maintain the eutrophication state of the lake. In-situ passivation of sediment is widely used as a control method for phosphorus in lakes because of its strong operability and obvious phosphorus control effect. In this paper, the research status of phosphorus passivation materials in lake sediments in recent years is reviewed, including the types of common passivation materials, environmental factors affecting phosphorus passivation control, and existing problems, and the future research direction is prospected, in order to provide scientific basis and technical support for lake sediment pollution control.
[1] | Paerl, H.W. and Otten, T.G. (2013) Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microbial Ecology, 65, 995-1010. https://doi.org/10.1007/s00248-012-0159-y |
[2] | 杨洁, 刘波, 常素云, 张凯, 任必穷. 富营养化水体原位控磷技术研究及应用[J]. 水资源保护, 2013(2): 10-17. |
[3] | Wang, L. and Liang, T. (2016) Distribution Patterns and Dynamics of Phosphorus Forms in the Overlying Water and Sediment of Dongting Lake. Journal of Great Lakes Research, 42, 565-570. https://doi.org/10.1016/j.jglr.2016.03.013 |
[4] | Fathollahzadeh, H., Kaczala, F., Bhatnagar, A. and Hogland, W. (2015) Significance of Environmental Dredging on Metal Mobility from Contaminated Sediments in the Oskarshamn Harbor, Sweden. Chemosphere, 119, 445-451. https://doi.org/10.1016/j.chemosphere.2014.07.008 |
[5] | 钟继承, 范成新. 底泥疏浚效果及环境效应研究进展[J]. 湖泊科学, 2007, 19(1): 1-10. |
[6] | Waajen, G., Pauwels, M. and Lürling, M. (2017) Effects of Combined Flocculant—Lanthanum Modified Bentonite Treatment on Aquatic Macroinvertebrate Fauna. Water Research, 122, 183-193. https://doi.org/10.1016/j.watres.2017.05.075 |
[7] | Zhang, X., Zhen, W., Jensen, H.S., Reitzel, K., Jeppesen, E. and Liu, Z. (2021) The Combined Effects of Macrophytes (Vallisneria denseserrulata) and a Lanthanum-Modified Bentonite on Water Quality of Shallow Eutrophic Lakes: A Mesocosm Study. Environmental Pollution, 277, Article ID: 116720. https://doi.org/10.1016/j.envpol.2021.116720 |
[8] | Babin, J., Prepas, E.E., Murphy, T.P. and Hamilton, H.R. (1989) A Test of the Effects of Lime on Algal Biomass and Total Phosphorus Concentrations in Edmonton Stormwater Retention Lakes. Lake and Reservoir Management, 5, 129-135. https://doi.org/10.1080/07438148909354689 |
[9] | Cooke, G.D., Welch, E.B., Martin, A.B., Fulmer, D.G., Hyde, J.B. and Schrieve, G.D. (1993) Effectiveness of Al, Ca, and Fe Salts for Control of Internal Phosphorus Loading in Shallow and Deep Lakes. Hydrobiologia, 253, 323-335. https://doi.org/10.1007/bf00050758 |
[10] | Churchill, J.J., Beutel, M.W. and Burgoon, P.S. (2009) Evaluation of Optimal Dose and Mixing Regime for Alum Treatment of Matthiesen Creek Inflow to Jameson Lake, Washington. Lake and Reservoir Management, 25, 102-110. https://doi.org/10.1080/07438140802714510 |
[11] | 包先明, 陈开宁, 范成新. 化学物添加控制湖泊内源磷负荷的有效性研究[J]. 生态环境, 2007(1): 8-11. |
[12] | Wang, J., Chen, J., Chen, Q., Yang, H., Zeng, Y., Yu, P., et al. (2019) Assessment on the Effects of Aluminum-Modified Clay in Inactivating Internal Phosphorus in Deep Eutrophic Reservoirs. Chemosphere, 215, 657-667. https://doi.org/10.1016/j.chemosphere.2018.10.095 |
[13] | Zhan, Y., Yu, Y., Lin, J., Wu, X., Wang, Y. and Zhao, Y. (2019) Simultaneous Control of Nitrogen and Phosphorus Release from Sediments Using Iron-Modified Zeolite as Capping and Amendment Materials. Journal of Environmental Management, 249, Article ID: 109369. https://doi.org/10.1016/j.jenvman.2019.109369 |
[14] | Zou, Y., Grace, M.R., Roberts, K.L. and Yu, X. (2017) Thin Ferrihydrite Sediment Capping Sequestrates Phosphorus Experiencing Redox Conditions in a Shallow Temperate Lacustrine Wetland. Chemosphere, 185, 673-680. https://doi.org/10.1016/j.chemosphere.2017.07.052 |
[15] | Berg, U., Neumann, T., Donnert, D., Nüesch, R. and Stüben, D. (2004) Sediment Capping in Eutrophic Lakes—Efficiency of Undisturbed Calcite Barriers to Immobilize Phosphorus. Applied Geochemistry, 19, 1759-1771. https://doi.org/10.1016/j.apgeochem.2004.05.004 |
[16] | Dittrich, M., Gabriel, O., Rutzen, C. and Koschel, R. (2011) Lake Restoration by Hypolimnetic Ca(OH)2 Treatment: Impact on Phosphorus Sedimentation and Release from Sediment. Science of the Total Environment, 409, 1504-1515. https://doi.org/10.1016/j.scitotenv.2011.01.006 |
[17] | 刘广容, 叶春松, 贺靖皓, 戴文津. 原位化学处理对东湖底泥中磷释放的影响[J]. 武汉大学学报(理学版), 2008(4): 409-413. |
[18] | 何思琪, 周亚义, 林建伟, 张宏华, 汪振华, 詹艳慧, 汲雨, 奚秀清, 邢云青, 高春梅. 氢氧化镧改良沉积物对水中磷的吸附特征[J]. 环境化学, 2018, 37(11): 2565-2574. |
[19] | Wu, D., Zhan, Y., Lin, J., Zhang, Z. and Xie, B. (2022) Contrasting Effect of Lanthanum Hydroxide and Lanthanum Carbonate Treatments on Phosphorus Mobilization in Sediment. Chemical Engineering Journal, 427, Article ID: 132021. https://doi.org/10.1016/j.cej.2021.132021 |
[20] | 王哲, 张波, 朱俊, 强国泉, 闫德馨, 丁亮亮, 李家科, 李怀恩. 镧沸石控制人工湖泊沉积物磷释放的试验研究[J]. 水利水电技术, 2020, 51(7): 77-84. |
[21] | Sun, C., Huang, C., Wang, P., Yin, J., Tian, H., Liu, Z., et al. (2024) Low-Cost Eggshell-Fly Ash Adsorbent for Phosphate Recovery: A Potential Slow-Release Phosphate Fertilizer. Water Research, 255, Article ID: 121483. https://doi.org/10.1016/j.watres.2024.121483 |
[22] | Li, H., Wang, Y., Zhao, Y., Wang, L., Feng, J. and Sun, F. (2023) Efficient Simultaneous Phosphate and Ammonia Adsorption Using Magnesium-Modified Biochar Beads and Their Recovery Performance. Journal of Environmental Chemical Engineering, 11, Article ID: 110875. https://doi.org/10.1016/j.jece.2023.110875 |
[23] | Dong, L., Li, Y., Wen, X., Zhao, M., Zhang, L., Zhu, M., et al. (2024) A New Strategy for Enhanced Phosphate Removal from Waters Using Ferric Oxide Impregnated Biochar. Chemical Engineering Journal, 485, Article ID: 149953. https://doi.org/10.1016/j.cej.2024.149953 |
[24] | Yin, H. and Kong, M. (2015) Reduction of Sediment Internal P-Loading from Eutrophic Lakes Using Thermally Modified Calcium-Rich Attapulgite-Based Thin-Layer Cap. Journal of Environmental Management, 151, 178-185. https://doi.org/10.1016/j.jenvman.2015.01.003 |
[25] | Douglas, G., Adeney, J. and Robb, M. (1999) A Novel Technique for Reducing Bioavailable Phosphorus in Water and Sediments. International Association Water Quality Conference on Diffuse Pollution, 1999, Perth, 16-20 May 1999, 517-523. |
[26] | Douglas, G., Adeney, J. and Zappia, L. (2000) Sediment Remediation Project: 1998/9 Laboratory Trial Report CSIRO Land and Water. Commonwealth Scientific and Industrial Research Organization. |
[27] | Yin, H., Ren, C. and Li, W. (2018) Introducing Hydrate Aluminum into Porous Thermally-Treated Calcium-Rich Attapulgite to Enhance Its Phosphorus Sorption Capacity for Sediment Internal Loading Management. Chemical Engineering Journal, 348, 704-712. https://doi.org/10.1016/j.cej.2018.05.065 |
[28] | 郑苗壮, 卢少勇, 金相灿, 胡小贞, 张帆, 卢维盛. 温度对钝化剂抑制滇池底泥磷释放的影响[J]. 环境科学, 2008(9): 2465-2469. |
[29] | Epe, T.S., Finsterle, K. and Yasseri, S. (2017) Nine Years of Phosphorus Management with Lanthanum Modified Bentonite (Phoslock) in a Eutrophic, Shallow Swimming Lake in Germany. Lake and Reservoir Management, 33, 119-129. https://doi.org/10.1080/10402381.2016.1263693 |
[30] | Gibbs, M. and Özkundakci, D. (2010) Effects of a Modified Zeolite on P and N Processes and Fluxes across the Lake Sediment-Water Interface Using Core Incubations. Hydrobiologia, 661, 21-35. https://doi.org/10.1007/s10750-009-0071-8 |
[31] | Albarano, L., Lofrano, G., Costantini, M., Zupo, V., Carraturo, F., Guida, M., et al. (2021) Comparison of in Situ Sediment Remediation Amendments: Risk Perspectives from Species Sensitivity Distribution. Environmental Pollution, 272, Article ID: 115995. https://doi.org/10.1016/j.envpol.2020.115995 |
[32] | Luo, Q., Zhang, X., Wei, J., Zhang, J., Guo, Z. and Song, Y. (2025) High-Efficiency Lanthanum-Modified Zeolite Adsorbents for Phosphorus Control and Algal Suppression: Preparation, Characterization and Mechanistic Insights. Separation and Purification Technology, 352, Article ID: 128146. https://doi.org/10.1016/j.seppur.2024.128146 |