|
青藏高原冻土退化对气候的响应及环境效应
|
Abstract:
作为全球海拔最高的独特自然地理单元,青藏高原对局部、区域乃至全球天气和气候系统具有显著影响。文章基于青藏高原地区温度、降水因素,对地温和冻土现今发生的变化进行分析,并了解其产生的影响。青藏高原地区由于温度不断趋暖,降水变率增大,以及地温的升高,使一些多年冻土转变为季节性冻土,季节性冻土出现不衔接冻土和融化夹层。另一方面,由于高原对于气候变化反应敏感,不同地区冻土受到气候因素的影响消减程度也不同。冻土退缩及其对环境和人类活动的影响也存在很大的不确定性。
As the unique natural geographical unit with the highest elevation in the world, the Qinghai-Xizang Plateau has a significant impact on local, regional, and even global weather and climate systems. Based on temperature and precipitation factors in the Qinghai-Xizang Plateau region, this paper analyzes the current changes in ground temperature and permafrost and understands their impacts. Due to the continuous warming of temperature, increased variability in precipitation, and rising ground temperature in the Qinghai-Xizang Plateau region, some permafrost has been transformed into seasonal frozen ground, with discontinuous frozen ground and thawed interlayers appearing in the seasonal frozen ground. On the other hand, as the plateau is highly sensitive to climate change, the degree of reduction in permafrost in different areas due to climatic factors also varies. There is also great uncertainty in the retreat of permafrost and its impacts on the environment and human activities.
[1] | 王澄海, 董文杰, 韦志刚. 青藏高原季节性冻土年际变化的异常特征[J]. 地理学报, 2001, 56(5): 523-531. |
[2] | Cui, Z.J. (1980) Periglacial Phenomena and Environmental in the Qinghai Xizang Plateau. Collection of Research Papers for the International Exchange. Geological Publishing House. |
[3] | 马钰, 唐朝淑, 周余萍. 青海三十多年来气温、降水变化的诊断分析[J]. 青海环境, 1992(1): 32-41. |
[4] | 金会军, 李述训, 王绍令, 赵林. 气候变化对中国多年冻土和寒区环境的影响[J]. 地理学报, 2000(2): 161-173. |
[5] | 郝爱华, 薛娴, 尤全刚, 等. 青藏高原近60年降水变化研究进展[J]. 中国沙漠, 2023, 43(2): 43-52. |
[6] | 刘晓琼, 吴泽洲, 刘彦随, 等. 1960-2015年青海三江源地区降水时空特征[J]. 地理学报, 2019, 74(9): 1803-1820. |
[7] | 张盛魁. 祁连山区气候变化的研究[J]. 青海农林科技, 2006(2): 15-18. |
[8] | 杨浩, 崔春光, 王晓芳, 等. 气候变暖背景下雅鲁藏布江流域降水变化研究进展[J]. 暴雨灾害, 2019, 38(6): 565-575. |
[9] | Ge, G., Shi, Z., Yang, X., Hao, Y., Guo, H., Kossi, F., et al. (2017) Analysis of Precipitation Extremes in the Qinghai-Tibetan Plateau, China: Spatio-Temporal Characteristics and Topography Effects. Atmosphere, 8, Article 127. https://doi.org/10.3390/atmos8070127 |
[10] | 刘广岳, 赵林, 谢昌卫, 等. 青藏高原多年冻土区地温年变化深度的变化规律及影响因素[J]. 冰川冻土, 2016, 38(5): 1189-1200. |
[11] | 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019, 64(27): 2783-2795. |
[12] | 王绍令, 赵秀锋, 郭东信, 等. 青藏高原冻土对气候变化的响应[J]. 冰川冻土, 1996, 18(S1): 157-165. |
[13] | 程国栋, 李树德, 南卓铜, 童伯良. 青藏高原1:300万冻土图(1983-1996) [Z]. 国家青藏高原科学数据中心, 2011. |
[14] | 王绍令. 近数十年来青藏公路沿线多年冻土变化[J]. 干旱区地理, 1993(1): 1-8. |
[15] | Tian, L., Zhao, L., Wu, X., Hu, G., Fang, H., Zhao, Y., et al. (2019) Variations in Soil Nutrient Availability across Tibetan Grassland from the 1980s to 2010s. Geoderma, 338, 197-205. https://doi.org/10.1016/j.geoderma.2018.12.009 |