全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

昼夜节律与睡眠质量的相互关系:机制、影响因素与治疗方法
The Interrelationship Between Circadian Rhythms and Sleep Quality: Mechanisms, Influencing Factors, and Therapeutic Approaches

DOI: 10.12677/ap.2025.154188, PP. 111-118

Keywords: 昼夜节律,睡眠质量,生物钟,光疗法,褪黑激素,睡眠障碍
Circadian Rhythm
, Sleep Quality, Biological Clock, Light Therapy, Melatonin, Sleep Disorders

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文旨在探讨昼夜节律与睡眠质量的相互关系,并总结基于昼夜节律的治疗方法。通过分析昼夜节律的基本机制及其对睡眠的影响,识别影响昼夜节律同步性的因素,包括环境光照、饮食习惯、运动与体力活动以及社会行为与生活习惯。研究发现,现代生活中的不规律作息、夜班工作、光污染等因素常导致昼夜节律紊乱,引发睡眠问题。基于昼夜节律的治疗方法,以期为解决睡眠障碍提供科学参考。
This article aims to explore the interrelationship between circadian rhythms and sleep quality, and to summarize therapeutic approaches based on circadian rhythms. By analyzing the basic mechanisms of circadian rhythms and their impact on sleep, factors that affect the synchronization of circadian rhythms are identified, including environmental light exposure, dietary habits, exercise and physical activity, as well as social behaviors and lifestyle habits. The study found that irregular schedules in modern life, night-shift work, and light pollution often lead to circadian rhythm disruption, causing sleep problems. Circadian rhythm-based therapeutic approaches are presented, with the expectation of providing scientific references for solving sleep disorders.

References

[1]  郭姿乐, 王振杰, 赵蔓, 陈婷蔚, 等(2022). 中国老年人睡眠障碍患病率的Meta分析. 中国全科医学, 25(16), 2036-2043.
https://qikan.cqvip.com/Qikan/Article/Detail?id=7107109681
[2]  Ahn, J., Yeo, H., Lee, S., Hwang, Y., Jeon, S., & Kim, S. J. (2024). Shift Schedules and Circadian Preferences: The Association with Sleep and Mood. Frontiers in Public Health, 12, Article 1283543.
https://doi.org/10.3389/fpubh.2024.1283543
[3]  Angerer, M., Pichler, G., Angerer, B., Scarpatetti, M., Schabus, M., & Blume, C. (2022). From Dawn to Dusk—Mimicking Natural Daylight Exposure Improves Circadian Rhythm Entrainment in Patients with Severe Brain Injury. Sleep, 45, zsac065.
https://doi.org/10.1093/sleep/zsac065
[4]  Asher, G., & Sassone-Corsi, P. (2015). Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell, 161, 84-92.
https://doi.org/10.1016/j.cell.2015.03.015
[5]  Atan, Y. S., Subaşı, M., Güzel Özdemir, P., & Batur, M. (2023). The Effect of Blindness on Biological Rhythms and the Consequences of Circadian Rhythm Disorder. Turkish Journal of Ophthalmology, 53, 111-119.
https://doi.org/10.4274/tjo.galenos.2022.59296
[6]  Bano-Otalora, B., Martial, F., Harding, C., Bechtold, D. A., Allen, A. E., Brown, T. M. et al. (2021). Bright Daytime Light Enhances Circadian Amplitude in a Diurnal Mammal. Proceedings of the National Academy of Sciences of the United States of America, 118, e2100094118.
https://doi.org/10.1073/pnas.2100094118
[7]  Baranwal, N., Yu, P. K., & Siegel, N. S. (2023). Sleep Physiology, Pathophysiology, and Sleep Hygiene. Progress in Cardiovascular Diseases, 77, 59-69.
https://doi.org/10.1016/j.pcad.2023.02.005
[8]  Barnes, G., Bernard, R., Wagner, M., & Berry, R. (2023). Teenager with Sleep and Wakefulness at the Wrong Time. Journal of Clinical Sleep Medicine, 19, 1165-1166.
https://doi.org/10.5664/jcsm.10530
[9]  Begemann, K., & Oster, H. (2022). Snack Timing Affects Tissue Clock and Metabolic Responses in Male Mice. Frontiers in Nutrition, 9, Article 956641.
https://doi.org/10.3389/fnut.2022.956641
[10]  Bermúdez-Guzmán, L., Blanco-Saborío, A., Ramírez-Zamora, J., & Lovo, E. (2021). The Time for Chronotherapy in Radiation Oncology. Frontiers in Oncology, 11, Article 687672.
https://doi.org/10.3389/fonc.2021.687672
[11]  Boivin, D. B., & James, F. O. (2002). Circadian Adaptation to Night-Shift Work by Judicious Light and Darkness Exposure. Journal of Biological Rhythms, 17, 556-567.
https://doi.org/10.1177/0748730402238238
[12]  Burns, A. C., Saxena, R., Vetter, C., Phillips, A. J. K., Lane, J. M., & Cain, S. W. (2021). Time Spent in Outdoor Light Is Associated with Mood, Sleep, and Circadian Rhythm-Related Outcomes: A Cross-Sectional and Longitudinal Study in over 400,000 UK Biobank Participants. Journal of Affective Disorders, 295, 347-352.
https://doi.org/10.1016/j.jad.2021.08.056
[13]  Collins, B., Pierre-Ferrer, S., Muheim, C., Lukacsovich, D., Cai, Y., Spinnler, A. et al. (2020). Circadian Vipergic Neurons of the Suprachiasmatic Nuclei Sculpt the Sleep-Wake Cycle. Neuron, 108, 486-499.e5.
https://doi.org/10.1016/j.neuron.2020.08.001
[14]  Delorme, T. C., Srikanta, S. B., Fisk, A. S., Cloutier, M., Sato, M., Pothecary, C. A. et al. (2022). Chronic Exposure to Dim Light at Night or Irregular Lighting Conditions Impact Circadian Behavior, Motor Coordination, and Neuronal Morphology. Frontiers in Neuroscience, 16, Article 855154.
https://doi.org/10.3389/fnins.2022.855154
[15]  Doruk, Y. U., Yarparvar, D., Akyel, Y. K., Gul, S., Taskin, A. C., Yilmaz, F. et al. (2020). A Clock-Binding Small Molecule Disrupts the Interaction between CLOCK and BMAL1 and Enhances Circadian Rhythm Amplitude. Journal of Biological Chemistry, 295, 3518-3531.
https://doi.org/10.1074/jbc.ra119.011332
[16]  Hood, S., & Amir, S. (2017). The Aging Clock: Circadian Rhythms and Later Life. Journal of Clinical Investigation, 127, 437-446.
https://doi.org/10.1172/jci90328
[17]  Hou, D., Lin, C., & Lin, Y. (2022). Diurnal Circadian Lighting Accumulation Model: A Predictor of the Human Circadian Phase Shift Phenotype. Phenomics, 2, 50-63.
https://doi.org/10.1007/s43657-021-00039-6
[18]  Hubbard, J., Kobayashi Frisk, M., Ruppert, E., Tsai, J. W., Fuchs, F., Robin-Choteau, L. et al. (2021). Dissecting and Modeling Photic and Melanopsin Effects to Predict Sleep Disturbances Induced by Irregular Light Exposure in Mice. Proceedings of the National Academy of Sciences of the United States of America, 118, e2017364118.
https://doi.org/10.1073/pnas.2017364118
[19]  Kamat, P. K., Khan, M. B., Smith, C., Siddiqui, S., Baban, B., Dhandapani, K. et al. (2023). The Time Dimension to Stroke: Circadian Effects on Stroke Outcomes and Mechanisms. Neurochemistry International, 162, Article ID: 105457.
https://doi.org/10.1016/j.neuint.2022.105457
[20]  Kim, N., Ka, S., & Park, J. (2023). Effects of Exercise Timing and Intensity on Physiological Circadian Rhythm and Sleep Quality: A Systematic Review. Physical Activity and Nutrition, 27, 052-063.
https://doi.org/10.20463/pan.2023.0029
[21]  Koch, A. A., Bagnall, J. S., Smyllie, N. J., Begley, N., Adamson, A. D., Fribourgh, J. L. et al. (2022). Quantification of Protein Abundance and Interaction Defines a Mechanism for Operation of the Circadian Clock. eLife, 11, e73976.
https://doi.org/10.7554/elife.73976
[22]  Kontos, A., Baumert, M., Lushington, K., Kennedy, D., Kohler, M., Cicua-Navarro, D. et al. (2020). The Inconsistent Nature of Heart Rate Variability during Sleep in Normal Children and Adolescents. Frontiers in Cardiovascular Medicine, 7, Article 19.
https://doi.org/10.3389/fcvm.2020.00019
[23]  Lang, C., Richardson, C., Short, M. A., & Gradisar, M. (2022). Low-Intensity Scheduled Morning Exercise for Adolescents with a Late Chronotype: A Novel Treatment to Advance Circadian Phase? SLEEP Advances, 3, zpac021.
https://doi.org/10.1093/sleepadvances/zpac021
[24]  Li, B., Hsieh, Y., Lai, W., Tung, T., Chen, Y., Yang, C. et al. (2023). Melatonin Ameliorates Neuropsychiatric Behaviors, Gut Microbiome, and Microbiota-Derived Metabolites in Rats with Chronic Sleep Deprivation. International Journal of Molecular Sciences, 24, Article 16820.
https://doi.org/10.3390/ijms242316820
[25]  Mack, K. L., Jaggard, J. B., Persons, J. L., Roback, E. Y., Passow, C. N., Stanhope, B. A. et al. (2021). Repeated Evolution of Circadian Clock Dysregulation in Cavefish Populations. PLOS Genetics, 17, e1009642.
https://doi.org/10.1371/journal.pgen.1009642
[26]  Manolis, T. A., Manolis, A. A., Apostolopoulos, E. J., Melita, H., & Manolis, A. S. (2020). Cardiovascular Complications of Sleep Disorders: A Better Night’s Sleep for a Healthier Heart/from Bench to Bedside. Current Vascular Pharmacology, 19, 210-232.
https://doi.org/10.2174/1570161118666200325102411
[27]  McHill, A. W., Hull, J. T., & Klerman, E. B. (2022). Chronic Circadian Disruption and Sleep Restriction Influence Subjective Hunger, Appetite, and Food Preference. Nutrients, 14, Article 1800.
https://doi.org/10.3390/nu14091800
[28]  Moon, E., Partonen, T., Beaulieu, S., & Linnaranta, O. (2022). Melatonergic Agents Influence the Sleep-Wake and Circadian Rhythms in Healthy and Psychiatric Participants: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Neuropsychopharmacology, 47, 1523-1536.
https://doi.org/10.1038/s41386-022-01278-5
[29]  Nagare, R., Woo, M., MacNaughton, P., Plitnick, B., Tinianov, B., & Figueiro, M. (2021). Access to Daylight at Home Improves Circadian Alignment, Sleep, and Mental Health in Healthy Adults: A Crossover Study. International Journal of Environmental Research and Public Health, 18, Article 9980.
https://doi.org/10.3390/ijerph18199980
[30]  Nahmias, Y., & Androulakis, I. P. (2021). Circadian Effects of Drug Responses. Annual Review of Biomedical Engineering, 23, 203-224.
https://doi.org/10.1146/annurev-bioeng-082120-034725
[31]  Olejniczak, I., Ripperger, J. A., Sandrelli, F., Schnell, A., Mansencal-Strittmatter, L., Wendrich, K. et al. (2021). Light Affects Behavioral Despair Involving the Clock Gene Period 1. PLOS Genetics, 17, e1009625.
https://doi.org/10.1371/journal.pgen.1009625
[32]  Ping, Y., Shao, L., Li, M., Yang, L., & Zhang, J. (2020). Contribution of Social Influences through Superposition of Visual and Olfactory Inputs to Circadian Re-Entrainment. iScience, 23, Article ID: 100856.
https://doi.org/10.1016/j.isci.2020.100856
[33]  Polymeropoulos, C. M., Brooks, J., Czeisler, E. L., Fisher, M. A., Gibson, M. M., Kite, K. et al. (2021). Tasimelteon Safely and Effectively Improves Sleep in Smith-Magenis Syndrome: A Double-Blind Randomized Trial Followed by an Open-Label Extension. Genetics in Medicine, 23, 2426-2432.
https://doi.org/10.1038/s41436-021-01282-y
[34]  Ricketts, E. J., Swisher, V., Greene, D. J., Silverman, D., Nofzinger, E. A., & Colwell, C. S. (2023). Sleep Disturbance in Tourette’s Disorder: Potential Underlying Mechanisms. Current Sleep Medicine Reports, 9, 10-22.
https://doi.org/10.1007/s40675-022-00242-5
[35]  Schoonderwoerd, R. A., de Rover, M., Janse, J. A. M., Hirschler, L., Willemse, C. R., Scholten, L. et al. (2022). The Photobiology of the Human Circadian Clock. Proceedings of the National Academy of Sciences of the United States of America, 119, e2118803119.
https://doi.org/10.1073/pnas.2118803119
[36]  Shin, J., Kim, S., Shin, Y. J., Park, B., & Park, S. (2023). Comparison of Acceptance and Commitment Therapy (ACT) and Cognitive Behavior Therapy (CBT) for Chronic Insomnia: A Pilot Randomized Controlled Trial. Nature and Science of Sleep, 15, 523-531.
https://doi.org/10.2147/nss.s409981
[37]  Teo, S. Y. M., Kanaley, J. A., Guelfi, K. J., Marston, K. J., & Fairchild, T. J. (2020). The Effect of Exercise Timing on Glycemic Control: A Randomized Clinical Trial. Medicine & Science in Sports & Exercise, 52, 323-334.
https://doi.org/10.1249/mss.0000000000002139
[38]  Thomas, J. M., Kern, P. A., Bush, H. M., McQuerry, K. J., Black, W. S., Clasey, J. L. et al. (2020). Circadian Rhythm Phase Shifts Caused by Timed Exercise Vary with Chronotype. JCI Insight, 5, e134270.
https://doi.org/10.1172/jci.insight.134270
[39]  Trebucq, L. L., Lamberti, M. L., Rota, R., Aiello, I., Borio, C., Bilen, M. et al. (2023). Chronic Circadian Desynchronization of Feeding-Fasting Rhythm Generates Alterations in Daily Glycemia, LDL Cholesterolemia and Microbiota Composition in Mice. Frontiers in Nutrition, 10, Article 1154647.
https://doi.org/10.3389/fnut.2023.1154647
[40]  Vaziri, Z., Nami, M., Leite, J. P., Delbem, A. C. B., Hyppolito, M. A., & Ghodratitoostani, I. (2021). Conceptual Framework for Insomnia: A Cognitive Model in Practice. Frontiers in Neuroscience, 15, Article 628836.
https://doi.org/10.3389/fnins.2021.628836
[41]  Walker, J., Muench, A., Perlis, M. L., & Vargas, I. (2022). Cognitive Behavioral Therapy for Insomnia (CBT-I): A Primer. Clinical Psychology and Special Education, 11, 123-137.
https://doi.org/10.17759/cpse.2022110208
[42]  Wang, J., Cheng, G., Li, H., & Yang, W. (2024). Effects of Cognitive Training and Behavior Modification on Aggressive Behavior and Sleep Quality in Schizophrenia. Frontiers in Psychiatry, 15, Article 1363547.
https://doi.org/10.3389/fpsyt.2024.1363547
[43]  Yamaguchi, Y., Maekawa, Y., Kabashima, K., Mizuno, T., Tainaka, M., Suzuki, T. et al. (2023). An Intact Pituitary Vasopressin System Is Critical for Building a Robust Circadian Clock in the Suprachiasmatic Nucleus. Proceedings of the National Academy of Sciences of the United States of America, 120, e2308489120.
https://doi.org/10.1073/pnas.2308489120
[44]  Yang, P., Chaytor, N. S., Burr, R. L., Kapur, V. K., McCurry, S. M., Vitiello, M. V. et al. (2023). Rest-Activity Rhythm Fragmentation and Weaker Circadian Strength Are Associated with Cognitive Impairment in Survivors of Acute Respiratory Failure. Biological Research for Nursing, 25, 5-13.
https://doi.org/10.1177/10998004221109925
[45]  Yoon, J., Heo, S., Lee, H., Sul, E., Han, T., & Kwon, Y. (2024). Assessing the Feasibility and Efficacy of Pre-Sleep Dim Light Therapy for Adults with Insomnia: A Pilot Study. Medicina, 60, Article 632.
https://doi.org/10.3390/medicina60040632
[46]  Youngstedt, S. D., Elliott, J., Patel, S., Zi-Ching Mak, N., Raiewski, E., Malek, E. et al. (2022). Circadian Acclimatization of Performance, Sleep, and 6-Sulfatoxymelatonin Using Multiple Phase Shifting Stimuli. Frontiers in Endocrinology, 13, Article 964681.
https://doi.org/10.3389/fendo.2022.964681
[47]  Zerón-Rugerio, M. F., Díez-Noguera, A., Izquierdo-Pulido, M., & Cambras, T. (2021). Higher Eating Frequency Is Associated with Lower Adiposity and Robust Circadian Rhythms: A Cross-Sectional Study. The American Journal of Clinical Nutrition, 113, 17-27.
https://doi.org/10.1093/ajcn/nqaa282
[48]  Zhang, W., Yu, M., Xu, Y., Li, X., Zuo, H., Huang, Z. et al. (2023a). Self-Reported Sleep Status and Influencing Factors: A Web-Based National Cross-Sectional Survey in China. Annals of Medicine, 55, Article ID: 2287706.
https://doi.org/10.1080/07853890.2023.2287706
[49]  Zhang, H., Yan, X., Lin, A., Xia, P., Jia, M., & Su, Y. (2023b). Effect of Feeding Regimen on Circadian Activity Rhythms of Food Anticipatory by Ghrelin Hormone in a Pig Model. Nutritional Neuroscience, 26, 313-331.
https://doi.org/10.1080/1028415x.2022.2047436
[50]  Zhang, J., Zhang, Y., Liu, L., Wang, X., Xu, X., Li, Y. et al. (2022). Associations between the Timing of Different Foods’ Consumption with Cardiovascular Disease and All-Cause Mortality among Adults with Sleep Disorders. Frontiers in Nutrition, 9, Article 967996.
https://doi.org/10.3389/fnut.2022.967996
[51]  Zhou, J., Qu, J., Ji, S., Bu, Y., Hu, Y., Sun, H. et al. (2022). Research Trends in College Students’ Sleep from 2012 to 2021: A Bibliometric Analysis. Frontiers in Psychiatry, 13, Article 1005459.
https://doi.org/10.3389/fpsyt.2022.1005459

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133