全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

影像组学在胶质瘤诊疗中的应用研究进展
Research Progress on the Application of Radiomics in the Diagnosis and Treatment of Gliomas

DOI: 10.12677/jcpm.2025.42228, PP. 657-664

Keywords: 影像组学,胶质瘤,术前分级,精准诊疗,预后
Radiomics
, Glioma, Preoperative Grading, Precision Medicine, Prognosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

胶质瘤因其侵袭性强、异质性高及预后差异大的特点对精准诊疗提出了严峻挑战。在此背景下,影像组学作为新兴技术,因其无创、可定量解析肿瘤异质性的独特优势,逐渐成为精准医学研究的重要技术手段。该技术通过深度挖掘影像特征,能够精准预测肿瘤分级及分子分型、评估治疗反应和预后预测,为制定个体化诊疗方案提供客观依据。本文将系统综述影像组学在胶质瘤诊疗中的应用进展,重点阐述其在术前分级、疗效评估及生存预后分析三大核心领域的最新研究成果,以期为临床实践提供理论支持。
Gliomas present significant challenges for precision diagnosis and treatment due to their high invasiveness, considerable heterogeneity, and significant variability in prognosis. Against this backdrop, radiomics, as an emerging approach, has gradually become an important tool in precision medicine research, owing to its unique advantages, such as non-invasiveness and the ability to quantitatively analyze tumor heterogeneity. By mining imaging features, this technology can accurately predict tumor grade and molecular subtype, assess treatment response, and predict prognosis, providing an objective foundation for formulating personalized diagnosis and treatment plans. This paper systematically reviews the research progress of radiomics in the diagnosis and treatment of gliomas, focusing on the latest findings in three core areas: preoperative grading, efficacy assessment, and survival prognosis analysis, with the goal of providing theoretical support for clinical practice.

References

[1]  Lan, Z., Li, X. and Zhang, X. (2024) Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers. International Journal of Molecular Sciences, 25, Article 3040.
https://doi.org/10.3390/ijms25053040
[2]  Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W.K., et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathologica, 131, 803-820.
https://doi.org/10.1007/s00401-016-1545-1
[3]  Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251.
https://doi.org/10.1093/neuonc/noab106
[4]  D’Angelo, L., Armocida, D., Sampirisi, L., Paglia, F., Berra, L.V. and Santoro, A. (2020) Role of Endoscopic Surgical Biopsy in Diagnoses of Intraventricular/Periventricular Tumors: Review of Literature Including a Monocentric Case Series. Acta Neurologica Belgica, 120, 517-530.
https://doi.org/10.1007/s13760-020-01299-1
[5]  Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., et al. (2012) Radiomics: The Process and the Challenges. Magnetic Resonance Imaging, 30, 1234-1248.
https://doi.org/10.1016/j.mri.2012.06.010
[6]  Du, P., Liu, X., Wu, X., Chen, J., Cao, A. and Geng, D. (2023) Predicting Histopathological Grading of Adult Gliomas Based on Preoperative Conventional Multimodal MRI Radiomics: A Machine Learning Model. Brain Sciences, 13, Article 912.
https://doi.org/10.3390/brainsci13060912
[7]  Gutta, S., Acharya, J., Shiroishi, M.S., Hwang, D. and Nayak, K.S. (2020) Improved Glioma Grading Using Deep Convolutional Neural Networks. American Journal of Neuroradiology, 42, 233-239.
https://doi.org/10.3174/ajnr.a6882
[8]  Guo, J., Ren, J., Shen, J., Cheng, R. and He, Y. (2021) Do the Combination of Multiparametric MRI-Based Radiomics and Selected Blood Inflammatory Markers Predict the Grade and Proliferation in Glioma Patients? Diagnostic and Interventional Radiology, 27, 440-449.
https://doi.org/10.5152/dir.2021.20154
[9]  Li, Y., Ammari, S., Lawrance, L., Quillent, A., Assi, T., Lassau, N., et al. (2022) Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion. Cancers, 14, Article 1778.
https://doi.org/10.3390/cancers14071778
[10]  Fan, X., Li, J., Huang, B., Lu, H., Lu, C., Pan, M., et al. (2023) Noninvasive Radiomics Model Reveals Macrophage Infiltration in Glioma. Cancer Letters, 573, Article 216380.
https://doi.org/10.1016/j.canlet.2023.216380
[11]  Narang, S., Kim, D., Aithala, S., Heimberger, A.B., Ahmed, S., Rao, D., et al. (2017) Tumor Image-Derived Texture Features Are Associated with CD3 T-Cell Infiltration Status in Glioblastoma. Oncotarget, 8, 101244-101254.
https://doi.org/10.18632/oncotarget.20643
[12]  Rauch, P., Stefanits, H., Aichholzer, M., Serra, C., Vorhauer, D., Wagner, H., et al. (2023) Deep Learning-Assisted Radiomics Facilitates Multimodal Prognostication for Personalized Treatment Strategies in Low-Grade Glioma. Scientific Reports, 13, Article No. 9494.
https://doi.org/10.1038/s41598-023-36298-8
[13]  Kim, J.Y., Park, J.E., Jo, Y., Shim, W.H., Nam, S.J., Kim, J.H., et al. (2018) Incorporating Diffusion and Perfusion-Weighted MRI into a Radiomics Model Improves Diagnostic Performance for Pseudoprogression in Glioblastoma Patients. Neuro-Oncology, 21, 404-414.
https://doi.org/10.1093/neuonc/noy133
[14]  Ismail, M., Hill, V., Statsevych, V., Huang, R., Prasanna, P., Correa, R., et al. (2018) Shape Features of the Lesion Habitat to Differentiate Brain Tumor Progression from Pseudoprogression on Routine Multiparametric MRI: A Multisite Study. American Journal of Neuroradiology, 39, 2187-2193.
https://doi.org/10.3174/ajnr.a5858
[15]  Ren, J., Zhai, X., Yin, H., Zhou, F., Hu, Y., Wang, K., et al. (2023) Multimodality MRI Radiomics Based on Machine Learning for Identifying True Tumor Recurrence and Treatment-Related Effects in Patients with Postoperative Glioma. Neurology and Therapy, 12, 1729-1743.
https://doi.org/10.1007/s40120-023-00524-2
[16]  Sherminie, L.P.G., Jayatilake, M.L., Hewavithana, B., Weerakoon, B.S. and Vijithananda, S.M. (2023) Morphometry-based Radiomics for Predicting Therapeutic Response in Patients with Gliomas Following Radiotherapy. Frontiers in Oncology, 13, Article 1139902.
https://doi.org/10.3389/fonc.2023.1139902
[17]  Wang, J., Zheng, X., Zhang, J., Xue, H., Wang, L., Jing, R., et al. (2021) An MRI-Based Radiomics Signature as a Pretreatment Noninvasive Predictor of Overall Survival and Chemotherapeutic Benefits in Lower-Grade Gliomas. European Radiology, 31, 1785-1794.
https://doi.org/10.1007/s00330-020-07581-3
[18]  Zhou, H., Vallières, M., Bai, H.X., Su, C., Tang, H., Oldridge, D., et al. (2017) MRI Features Predict Survival and Molecular Markers in Diffuse Lower-Grade Gliomas. Neuro-Oncology, 19, 862-870.
https://doi.org/10.1093/neuonc/now256
[19]  Liu, X., Li, Y., Qian, Z., Sun, Z., Xu, K., Wang, K., et al. (2018) A Radiomic Signature as a Non-Invasive Predictor of Progression-Free Survival in Patients with Lower-Grade Gliomas. NeuroImage: Clinical, 20, 1070-1077.
https://doi.org/10.1016/j.nicl.2018.10.014
[20]  Pak, E., Choi, K.S., Choi, S.H., Park, C., Kim, T.M., Park, S., et al. (2021) Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI. Korean Journal of Radiology, 22, 1514-1524.
https://doi.org/10.3348/kjr.2020.1433
[21]  Ferrari, R., Trinci, M., Casinelli, A., Treballi, F., Leone, E., Caruso, D., et al. (2024) Radiomics in Radiology: What the Radiologist Needs to Know about Technical Aspects and Clinical Impact. La radiologia medica, 129, 1751-1765.
https://doi.org/10.1007/s11547-024-01904-w
[22]  Pati, S., Verma, R., Akbari, H., Bilello, M., Hill, V.B., Sako, C., et al. (2020) Reproducibility Analysis of Multi-Institutional Paired Expert Annotations and Radiomic Features of the Ivy Glioblastoma Atlas Project (ivy GAP) Dataset. Medical Physics, 47, 6039-6052.
https://doi.org/10.1002/mp.14556
[23]  Ahanger, A.B., Aalam, S.W., Masoodi, T.A., Shah, A., Khan, M.A., Bhat, A.A., et al. (2025) Radiogenomics and Machine Learning Predict Oncogenic Signaling Pathways in Glioblastoma. Journal of Translational Medicine, 23, Article No. 121.
https://doi.org/10.1186/s12967-025-06101-5
[24]  Niclou, S.P., Fack, F. and Rajcevic, U. (2010) Glioma Proteomics: Status and Perspectives. Journal of Proteomics, 73, 1823-1838.
https://doi.org/10.1016/j.jprot.2010.03.007
[25]  Luo, J., Pan, M., Mo, K., Mao, Y. and Zou, D. (2023) Emerging Role of Artificial Intelligence in Diagnosis, Classification and Clinical Management of Glioma. Seminars in Cancer Biology, 91, 110-123.
https://doi.org/10.1016/j.semcancer.2023.03.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133