|
个性化植入体在正颌外科的临床应用研究
|
Abstract:
近年来,通过截骨后按照术前设计进行牙–颌骨复合体的复位与固定的正颌外科手术已经成为治疗颅颌面畸形的重要办法。要实现正颌手术通常需要进行术前设计、术中转移、术后评估等一系列步骤。传统的术中转移依赖于咬合导板的使用,但此种方法存在误差较大、耗时耗力等缺陷。随着计算机辅助下(CAD/CAM)的3D打印技术、激光切割塑形技术以及各种虚拟手术规划软件(VSP)的迅猛发展,目前已有研究表明使用个性化植入体(PSI)有望实现从术前虚拟设计到术中的精准转移。本文就个性化植入体(PSI)在正颌外科临床应用的研究进展做一综述,以期为临床实践提供相应参考。
In recent years, orthognathic surgery by osteotomy followed by repositioning and fixation of the tooth-mandibular complex according to the preoperative design has become an important approach to the treatment of craniomaxillofacial deformities. A series of steps such as preoperative design, intraoperative transfer, and postoperative evaluation are usually required to realize orthognathic surgery. Traditional intraoperative transfer relies on the use of occlusal plates, but this method suffers from large errors, time-consuming and labor-intensive drawbacks. With the rapid development of computer-aided 3D printing technology (CAD/CAM), laser cutting & shaping technology and various virtual surgical planning software (VSP), it has been shown that the use of Patient-Specific Implants (PSIs) is expected to achieve accurate transfer from preoperative virtual design to intraoperative transfer. In this paper, we present a review of the research progress on the application of PSI in orthognathic surgery, with a view to providing corresponding references for clinical practice.
[1] | 王旭东, 魏弘朴, 李彪. 从“经验外科”到“精准外科”——精准正颌外科体系的建立与临床应用[J]. 华西口腔医学杂志, 2023, 41(5): 491-501. |
[2] | Gander, T., Bredell, M., Eliades, T., Rücker, M. and Essig, H. (2015) Splintless Orthognathic Surgery: A Novel Technique Using Patient-Specific Implants (PSI). Journal of Cranio-Maxillofacial Surgery, 43, 319-322. https://doi.org/10.1016/j.jcms.2014.12.003 |
[3] | 屈振宇, 王茜, 赵岩, 等. 骨支持式3D打印导板在上颌骨Le Fort I型截骨术中的应用[J]. 华西口腔医学杂志, 2018, 36(1): 60-65. |
[4] | 宋大立. 模型外科技术在正颌外科中的应用[J]. 实用口腔医学杂志, 2016, 32(5): 741-744. |
[5] | Posnick, J.C., Ricalde, P. and Ng, P. (2006) A Modified Approach to “Model Planning” in Orthognathic Surgery for Patients without a Reliable Centric Relation. Journal of Oral and Maxillofacial Surgery, 64, 347-356. https://doi.org/10.1016/j.joms.2005.10.022 |
[6] | Kuehle, R., Scheurer, M., Bouffleur, F., Fuchs, J., Engel, M., Hoffmann, J., et al. (2023) Accuracy of Patient-Specific Implants in Virtually Planned Segmental Le Fort I Osteotomies. Journal of Clinical Medicine, 12, Article 6038. https://doi.org/10.3390/jcm12186038 |
[7] | Dadhich, A., Nilesh, K., Shah, S. and Saluja, H. (2022) Three-Dimensional Printing in Maxillofacial Surgery: A Quantum Leap in Future. National Journal of Maxillofacial Surgery, 13, S203-S211. https://doi.org/10.4103/njms.njms_65_20 |
[8] | Li, D.T.S. and Leung, Y.Y. (2023) Patient-Specific Implants in Orthognathic Surgery. Oral and Maxillofacial Surgery Clinics of North America, 35, 61-69. https://doi.org/10.1016/j.coms.2022.06.004 |
[9] | Song, K. and Baek, S. (2009) Comparison of the Accuracy of the Three-Dimensional Virtual Method and the Conventional Manual Method for Model Surgery and Intermediate Wafer Fabrication. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 107, 13-21. https://doi.org/10.1016/j.tripleo.2008.06.002 |
[10] | Zinser, M.J., Mischkowski, R.A., Sailer, H.F. and Zöller, J.E. (2012) Computer-Assisted Orthognathic Surgery: Feasibility Study Using Multiple CAD/CAM Surgical Splints. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 113, 673-687. https://doi.org/10.1016/j.oooo.2011.11.009 |
[11] | Kim, S., Lee, S., Park, J., Yang, S. and Kim, J. (2023) Effectiveness of Individualized 3D Titanium-Printed Orthognathic Osteotomy Guides and Custom Plates. BMC Oral Health, 23, Article No. 255. https://doi.org/10.1186/s12903-023-03000-3 |
[12] | Philippe, B. (2013) Custom-Made Prefabricated Titanium Miniplates in Le Fort I Osteotomies: Principles, Procedure and Clinical Insights. International Journal of Oral and Maxillofacial Surgery, 42, 1001-1006. https://doi.org/10.1016/j.ijom.2012.12.013 |
[13] | Yang, W.-F., Zhang, C.-Y., Choi, W.S., Zhu, W.-Y., Li, D.T.S., Chen, X.-S., et al. (2020) A Novel ‘Surgeon-Dominated’ Approach to the Design of 3D-Printed Patient-Specific Surgical Plates in Mandibular Reconstruction: A Proof-of-Concept Study. International Journal of Oral and Maxillofacial Surgery, 49, 13-21. https://doi.org/10.1016/j.ijom.2019.05.005 |
[14] | Leung, Y.Y., Leung, J.K.C., Li, A.T.C., Teo, N.E.Z., Leung, K.P.Y., Au, S.W., et al. (2022) Accuracy and Safety of In-House Surgeon-Designed Three-Dimensional-Printed Patient-Specific Implants for Wafer-Less Le Fort I Osteotomy. Clinical Oral Investigations, 27, 705-713. https://doi.org/10.1007/s00784-022-04798-y |
[15] | Esmaeili, S., Aghdam, H.A., Motififard, M., Saber-Samandari, S., Montazeran, A.H., Bigonah, M., et al. (2020) A Porous Polymeric-Hydroxyapatite Scaffold Used for Femur Fractures Treatment: Fabrication, Analysis, and Simulation. European Journal of Orthopaedic Surgery & Traumatology, 30,123-131. https://pubmed.ncbi.nlm.nih.gov/31420732/ https://doi.org/10.1007/s00590-019-02530-3 |
[16] | Ma, L., Cheng, S., Ji, X., Zhou, Y., Zhang, Y., Li, Q., et al. (2020) Immobilizing Magnesium Ions on 3D Printed Porous Tantalum Scaffolds with Polydopamine for Improved Vascularization and Osteogenesis. Materials Science and Engineering: C, 117, Article 111303. https://doi.org/10.1016/j.msec.2020.111303 |
[17] | MacLeod, A., Patterson, M., MacTear, K. and Gill, H.S. (2020) 3D Printed Locking Osteosynthesis Screw Threads Have Comparable Strength to Machined or Hand‐Tapped Screw Threads. Journal of Orthopaedic Research, 38, 1559-1565. https://doi.org/10.1002/jor.24712 |
[18] | Kabiri, A., Liaghat, G., Alavi, F., Ansari, M. and Hedayati, S.K. (2021) A Comparative Study of 3D Printing and Heat-Compressing Methods for Manufacturing the Thermoplastic Composite Bone Fixation Plate: Design, Characterization, and in vitro Biomechanical Experimentation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235, 1439-1452. https://doi.org/10.1177/09544119211034353 |
[19] | Malenova, Y., Ortner, F., Liokatis, P., Haidari, S., Tröltzsch, M., Fegg, F., et al. (2023) Accuracy of Maxillary Positioning Using Computer-Designed and Manufactured Occlusal Splints or Patient-Specific Implants in Orthognathic Surgery. Clinical Oral Investigations, 27, 5063-5072. https://doi.org/10.1007/s00784-023-05125-9 |
[20] | Ebeling, M., Scheurer, M., Sakkas, A., Wilde, F. and Schramm, A. (2023) First-Hand Experience and Result with New Robot-Assisted Laser LeFort-I Osteotomy in Orthognathic Surgery: A Case Report. Journal of Personalized Medicine, 13, Article 287. https://doi.org/10.3390/jpm13020287 |
[21] | Demes, E., Rios, O., Chamorey, E., Lerhe, B., D’Andréa, G. and Savoldelli, C. (2023) Accuracy of Mandibular Anterior Subapical Osteotomy by Virtual Planning in Orthognathic Surgery Using Patient-Specific Implants. Journal of Stomatology, Oral and Maxillofacial Surgery, 124, Article 101299. https://doi.org/10.1016/j.jormas.2022.09.020 |
[22] | Franco, P.B. and Farrell, B.B. (2016) Inverted L Osteotomy: A New Approach via Intraoral Access through the Advances of Virtual Surgical Planning and Custom Fixation. Oral and Maxillofacial Surgery Cases, 2, 1-9. https://doi.org/10.1016/j.omsc.2016.01.001 |
[23] | Sneha, A., Krishnan, M., Satheesh, T., Dhasarathan, P. and Muralidoss, H. (2023) Patient-Specific Plates for Genioplasty: A Case Report. Cureus, 15, e38746. https://doi.org/10.7759/cureus.38746 |
[24] | Au, S.W., Li, D.T.S., Su, Y.X., et al. (2022) Accuracy of Self-Designed 3D-Printed Patient-Specific Surgical Guides and Fixation Plates for Advancement Genioplasty. International Journal of Computerized Dentistry, 25, 369-376. https://doi.org/10.3290/j.ijcd.b2599791 |
[25] | Goodson, A.M.C., Parmar, S., Ganesh, S., Zakai, D., Shafi, A., Wicks, C., et al. (2021) Printed Titanium Implants in UK Craniomaxillofacial Surgery. Part II: Perceived Performance (Outcomes, Logistics, and Costs). British Journal of Oral and Maxillofacial Surgery, 59, 320-328. https://doi.org/10.1016/j.bjoms.2020.08.088 |
[26] | Schemitsch, E.H. and Richards, R.R. (1992) The Effect of Malunion on Functional Outcome after Plate Fixation of Fractures of Both Bones of the Forearm in Adults. The Journal of Bone & Joint Surgery, 74, 1068-1078. https://doi.org/10.2106/00004623-199274070-00014 |
[27] | Small, T., Krebs, V., Molloy, R., Bryan, J., Klika, A.K. and Barsoum, W.K. (2014) Comparison of Acetabular Shell Position Using Patient Specific Instruments vs. Standard Surgical Instruments: A Randomized Clinical Trial. The Journal of Arthroplasty, 29, 1030-1037. https://doi.org/10.1016/j.arth.2013.10.006 |
[28] | van de Vijfeijken, S.E.C.M., Schreurs, R., Dubois, L., Becking, A.G., Becking, A.G., Dubois, L., et al. (2019) The Use of Cranial Resection Templates with 3D Virtual Planning and PEEK Patient-Specific Implants: A 3 Year Follow-up. Journal of Cranio-Maxillofacial Surgery, 47, 542-547. https://doi.org/10.1016/j.jcms.2018.07.012 |
[29] | Gander, T., Essig, H., Metzler, P., Lindhorst, D., Dubois, L., Rücker, M., et al. (2015) Patient Specific Implants (PSI) in Reconstruction of Orbital Floor and Wall Fractures. Journal of Cranio-Maxillofacial Surgery, 43, 126-130. https://doi.org/10.1016/j.jcms.2014.10.024 |
[30] | Yang, W., Choi, W.S., Leung, Y.Y., Curtin, J.P., Du, R., Zhang, C., et al. (2018) Three-Dimensional Printing of Patient-Specific Surgical Plates in Head and Neck Reconstruction: A Prospective Pilot Study. Oral Oncology, 78, 31-36. https://doi.org/10.1016/j.oraloncology.2018.01.005 |